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Preface

The teclmique and theory for estimating unknown quantities or parameters

from data are not new nor unknown to most mathematicians, biological

scientists, physical scientists, and engineers. However, most developments

of the theory usually assume that one knows or can approximate the

probability density function of the random error which corrupts the data.

Then the problem reduces to estimating the unknown parameters which define

the density function.

Unfortunately, during several years as consultant industrial mathe-

maticians we have foLmd few who assume easily the form of the probability

density function. The assumption of normal errors, that is, errors whose

distribution is the normal probability density function, is indeed

popular but sometimes dangerous.

We know of one case where the height of the hills in Korea were

assumed normal. _%_at this means is fun to conjecture. Even though the

central limit theorem may support the assumption of normal errors there

are certainly times when such an assumption is clearly false. Also, it

is desirable to have a measure of reliability of ones estimate which

(if one can get it) is based on an assumed probability density function.

Usually we simply want to obtain the best estimate from the available

data, hence no density function assumptions are necessary.

It is our intention here to develop a theory of linear estimation

from a non-parametric (that is, with no assumptions concerning the

underlying probability density functions associated with the errors in

the data) point of view and indicate ways to extend this theory to

problems in smoothing, filtering, extrapolation, and non-linear estimation.



Considerable attention, although not formally, is given to the concept

of a robust estimator. A robust estimator is one that is good enough

even though it is used in those instances where theoretically it does not

apply.

The results here are those of a study which led to a rather large

computer program for orbit determination. The technique used in the

program was essentially the one of linear estimation. A large part of the

material can be found in statistical literature, while the remainder is

original with the authors and some colleagues at NASA - Manned Spacecraft

Center, Houston, Texas.

We wish to acknowledge the contributions of Dr. H. P. Decell,

Mr. Eugene Davis, Dr. Byron Tapley and A. H. Feiveson. We express our

respect and appreciation to these colleagues who have taken time during

the last three years to discuss these topics and their applications

to various trajectory problems.



Chapter 1

MAI_qEMATICALCONCEPTS

I.i Matrices

The theory of linear statistical estimation that will be developed

in this report will require someknowledgeof the techniques of matrix

algebra. In this chapter we will introduce those matrix concepts which

perhaps maynot be foLmd in the usual undergraduate texts on matrix theory.

All matrices will be designated by capital English letters; the

notation A(m X n) = (aij) meansthat A is an m x n matrix having

a.. as the element in the i th row and jth column (i = l,...,m = number
ij

of rows; j = l,...,n = number of columns). All matrices considered will

,
be presumed to have elements a.. which are real numbers. A designates

ij

the transpose of A; thus if A(m X n) = (aij) then A (n X m) = (bij)

where b.. = a... I is the (n X n) identity matrix with l's down
1j j1 n

the diagonal and zeros elsewhere; usually the subscript n

dropped if the dimension of I is clear from the context.

(n X n) matrix (eij)

usually the superscript

clear from the context.

will be

En is the
rs

wuch that e = 1 and all other e.. = 0;
rs 1j

n will be dropped if the dimension of Ers is

A (m X n) is called square if m = n. If A

is square then IAI designates the determinant of A. If A is square

and IAl _ 0 then A -I designates the inverse of A, and A is said to

be nonsingular. En designates the set of all real (n X i) matrices;

En will also be called Euclidean n-space, and elements of _n called

n dimensional vectors, or just vectors if the dimension is clear from

the context. The symbol 0 will be used to designate either a matrix



which is identically zero or the scalar real number zero, depending upon

the context. Given any x in On, I]xl[ - /_ and is called the

"norm' of x. The symbol "C" will sometimes be used for "in" in the

set theoretic sense; e.g. "given any xCe " means given any x whichn

is an element (a member) of the set En. Let W(m X m) be positive

definite so that W= R R for some square R, [R[ # 0, [R[ = R .

* * 2
Forany a_%,definellallwz a R_a= llRall•

1.2 The Generalized Inverse of a Matrix

The importance of generalized inverses stems from the fact [4] that

the matrix equation

SB= G

if consistent has a general solution given by

B = SgB + )I - sgs)Y,

where Y is an arbitrary matrix of appropriate dimensions. The matrix

Sg is called a generalized inverse of S and has the property

ssgs = S.

Four types of generalized inverses can be defined as follows:

DEFINITION i.i Sg is said to be a _gneralized inverse of S if

(I.i) ssgs = S.
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DEFINITION1.2 Sr is said to be a reflexive generalized inverse of S

if

(1.2) ssrs = S and srssr --Sr.

DEFINITION i.3

if

Sn is said to be a normalized _eneralized inverse of S

(1.3) ssns = S, snss n-- Sn, and (ssn) *= SSn.

DEFINITION 1.4

(1.4)

St is said to be the pseudoinverse of S if

ssts = S, StSS t = S*, (sst) * = SSt, and (SIS)* = sts.

The generalized inverse of Definition i.I has been studied by Bose

[I] and Rao [6] with special reference to problems in least squares

theory. The reflexive generalized inverse does not appear to have been

studied although its existence was pointed out by Rao, and Frame [2]

has indicated an equivalent type under the term semi-inverse. The

normalized generalized inverse was introduced by Zelen and Goldman [8]

who used the term weak generalized inverse. The pseudo-inverse, which

is unique, was first introduced by Moore [3] and later by Penrose under

the names general reciprocal and generalized inverse, respectively.

Computational aspects have been studied by various authors [2], [6],

[7], [8].

1.3 Some Properties of Generalized Inverses

If we let Gg, Gr, Gn, and Gt denote the set of all generalized,

reflexive generalized, normalized generalized and pseudoinverses of a
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matrix, then it is clear from the definitions that

_G
Gt= Gn_ Gr g

The present investigation of further relationships between, and

properties of, the elements of these sets is based on examining the

relationship of a property of a matrix S to the corresponding property

of a typical element of Gi, i = g, r, n, t. The particular character-

istics selected in this investigation are rank, sy_netry, characteristic

roots, and characteristic vectors.

THEOREM I.i If Sg is any generalized inverse of S then

rank (Sg) >= rank (S) = rank (sgs) = rank (ssg).

Proof. Since the rank of a product does not exceed the rank of either

factor the conclusions follow from the equations

rank (S) >=rank (SSg) >=rank (ssgs) = rank (S),

rank (S) >__rank (sgs) >=rank (ssgs) = rank (S),

and

rank (Sg) >=,rank (ssgs) = rank (S).

In many investigations, it is desired that the rank of Sg be the

same as the rank of S. The following theorem indicates a necessary and

sufficient condition for this to hold.
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THEOREM1.2 A necessary and sufficient condition that rank (S) =

rank (Sg) is that Sg be a reflexive generalized inverse of S.

Proof. If Sg is a reflexive generalized inverse of S an application

of Theorem I.I to Sg shows that rank (Sg) <= rank (S) and hence

(S g) = rank (S).

Let S be an n X p matrix of rank r.

simple matrix multiplication shows that if S

S = PI-IBP2 -1

If rank (S) = rank (sg),

is expressed as

(which is always possible), where

(l.S) B =

' 0
I (r) : .... r,_3_r -

o , 0-r,r , n-r,p-r
I

and where

r X (p-r)

I(r) is the r X r identity matrix and 0 is the
r,p-r

null matrix, then a generalized inverse must be of the form

P2BrPl where Br= [I_r_ ....V_]' W WV "

Since P2BrPI can be shown to be a reflexive generalized inverse of S

the conclusion follows.

It follows from Theorem 1.2 and the definitions that normalized

generalized inverses Sn and the pseudoinverse S% have the same rank

as S. In addition the representation S = PI-IBP2 -I with B given by

(i.5) shows that rank (Sg) can assume any of the values rank (S),...,n

by appropriately choosing a generalized inverse of B.

If S is Hermitian, then it seems reasonable to inquire into the

Hermitian nature (if any) of the various types of generalized inverses
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of S. Examples of generalized inverses of 2 X 2 Hermitianmatrices

easily show that generalized inverses, reflexive generalized inverses,

and normalized generalized inverses need not be Hermitian. For example,

if

S _._

i i-i 1

then a generalized inverse, reflexive generalized inverse, and a normalized

generalized inverse are given by

Sg = Sr = Sn =

1

The expression 1/2 (Sg + Sg*) shows that a Hermitian generalized

inverse always exists if S is Hermitian. Similarly

where

ISS = _I S12

S12 $22

and (Sll S12) is a basis for the rowspace of S, shows that a Hermitian

reflexive generalized inverse always exists if S is Hermitian. Note

that

S _._ Sl,l S12

S12SllS12
SI2 * -i



It is easy to show that the pseudoinverse of a Hermitian matrix is

Hermitian (in fact, Penrose [4] proved the stronger result that S normal

implies St normal). If S is Hermitian and Sn is Hermitian then it

can be shownthat Sn - St .

The characteristic roots and vectors of a matrix are of interest in

many investigations of matrices. It is well-known that the characteristic

vectors of S and S-I are identical, with the corresponding character-

istic roots reciprocal. It is of interest, therefore, to determine to

what extent (if any) generalized inverses display this samebehavior.

It is easy to construct examples of generalized inverses Sz, i = g, r,

n, t, which have different characteristic vectors than S and also

examples for which the characteristic roots are not reciprocals, so that

additional assumptions on S are necessary.

We define properties R and V as follows:

A generalized inverse will be said to have property R if the

reciprocals of nonzero characteristic roots of S are characteristic

roots of Sg and conversely.

A generalized inverse will be said to have property V if x is a

characteristic vector of S with root k implies that x is a

characteristic vector of Sg with k-I and conversely.

Obviously property R is weaker than property V. Remarks made

previously indicate that generalized inverses of all types do not

necessarily possess properties R or V.

THEOREM 1.3 If S is Hermitian then Sn possesses property R.

Proof. Let _ be a nonzero characteristic root of S and x its

associated characteristic vector. Multiplying both sides of the



equation Sx = >`x by SSn yields

x = ssnx.

Since SSn = sn*s we have

--= ¢=> ìx = sn x.

Hence _-i is a characteristic root of Sn* and hence _-i is a

characteristic root of Sn.

Conversely let n be a nonzero characteristic root of Sn and y

be the associated characteristic vector, b_itiplying both sides of the

equation Shy = ny by S and using the fact that (SSn) = sn*s shows

that

sn*(sy) = n(sy).

Hence

-I
n (Sy) = S(Sy).

Thus Sy is a characteristic vector of S with characteristic root

-i *Syn . Note that if Sy : 0 then Sn : ssny = 0 or shy : O, which

is a contradiction.

The following lemma gives a sufficient condition for a reflexive

generalized inverse to possess property V.

LE_MA i.i If S and Sr con_nute then Sr possesses property V.

Proof. If S comnutes with Sr then the conclusion follows from

Sx = _x :_ Sx : _ssrx =_ >,-ix = srx,

sry = ny =_ sry : nsrsy =_ n-ly = Sy.
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This lerana is related to a result of Price [5] who proved that if

and St com_ute for some 1 then if x is a characteristic vector

S with nonzero characteristic root X it follows that x is also

sn

of

a characteristic vector of St with characteristic root x-I.

THEOREM 1.4 If S is normal, then St possesses property V.

Conversely, if S and Sg are normal and Sg possesses property

V, then Sg-- St.

Proof. By Penrose's Le_na 1.8 we have SSt =sts and the conclusion

follows from Lemma I.I.

Normality of S, Sg and property V imply that the spectral

"IE., respectively,representations of S and Sg are [i_iEi and [i_i i

and one easily verifies that Sg = St.

We note that Theorem 1.2 provides a partial characterization of

a reflexive generalized inverse in terms of rank and that Theorem 1.4

provides a similar characterization (under the assumption that S is

normal) of the pseudoinverse in terms of characteristic vectors. No

such characterization has yet been obtained for the normalized general-

ized inverses although Zelen and Goldman [8] have established that Sn

is a normalized generalized inverse if and only if it can be written

in the form Sn = (S*S)gS * where (S'S) g is a generalized inverse of

,
SS.

Some additional well-known properties of the pseudoinverse are

given below:
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THEOREM 1.5 For every (m X n) matrix A, there exists a unique

(n X m) matrix, which we shall designate as A+, that satisfied the

following four identities:

(I) AA+A= A

(2) A+AA + = A+

(3) (AA+)* = AA (m X m)

(4) CA+A) * = A+ACn X n)

Furthermore,

(RI) if D = (dij) is square (m = n) and diagonal (dij = 0 for i # j)

then D+ = (d._j) is defined by d.+. -- 0 for i # j d.+. = 0 ifi_ ' Ii

d.. = 0, d.+. = d? 1 if d.. _ 0.
Ii ii Ii ii

(R2) if A A = PDP , where PP = P P = I, and D is diagonal, then

A+ = pD+P*A *.

(R3) if A = BC, where the colmns of B are linearly independent

and the rows of C are linearly independent, then A+ C (CC)-I(B*B)-IB*.

Thus

(R3.1)

(R3.2)

(U3.3)

A+ = (A*A)-IA * if the columns of A are linearly independent.

• * -I
A+ = k (AA) if the rows of A are linearly independent.

A+ = A -I if A is square and nonsingular.

THEOREM i.6

(m)

(R2)

(R3)

(R4)

The matrix correspondence A -- A+ satisfies the following:

(A+)+ = A

(A*)+ = (A+)* - A+* : A *+

A+AA * = A*

A*AA + = A*
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(RS)

(R6)

(R7)

(R8)

(R9)

(m0)

(Rll)

(R12)

(R14)

(RZS)

(RI6)

(R17)

(m8)

A+*A÷A:A"*

A*+A*A = A

AA.*A_+ = A

A*A+*A + : A+

FA+*A* : A+

The row spaces of A + and A are identical, i.e., the

rows of A+ are in the row space of A and the rows of

A are in the row space of A+.

The column spaces of A+ and A are identical.

A, A+ and A all have the same rank.

, + A+'A+(AA) :

_ + _ AN +"(AA) (AA) :

If A+ commutes with some power of A and _ is any non-

zero eigen value of A corresponding to the eigen vector x,

then _-1 is an eigen value of A+ corresponding to the

eigen vector x.

If _ # 0 then

0+ *= 0 .

(od_.)+ : m-lA+"

DEFINITION

_1.4

for A(m X n) and b(m X I),

(A,b) =-A+b + (In - A+A)_n

The element of least norm in

Let x C Cn" Then

A(x - A+b) : O.

Let x C _n" Then

A (Ax - b) : 0.

(A,b) is A÷b.

x C (A,b) if and only if

x C )A,b) if and only if
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122NA 1.5 Let A(m X n), N(n X n) nonsingular, M(m X m) non-

singular. Then (AN)(AN) + = AA+ and (MA)+(MA) = A+A.

LEMMA 1.6 Let A(m X n), and N(n X n) nonsingular. Then

(A,b) = N (AN,b).

L_A 1.7 Let V = S2 be positive definite (n Xn), A(m Xn),

b(m X l). Then the vector (n X l)x of least [[x[ Iv

in (A,b) is given by S-I(As-I)+b.

LEMMA 1.8 The following statements are equivalent:

(1) The columns of A are linearly independent.

(2) A A is nonsingular.

(3) A+A = I.

THEOREM 1.7 The equation Ax = b has a solution (vector) x if

and only if AA+b = b. If the latter equality holds then x is a

solution if and only if x C (A,b).

THEOREM 1.8 (Least Squares). For A(m X n) and b(m X I), the set

of all (n X I) vectors x such that IIAx - bll is a minimum,

is (A,b). Also, the n X 1 matrix (vector) of least norm such that

lib - Axll is minimized, is A+b.

COROLLARY 1.8.1 For A(m Xn) and b(m X 1), and W(m Xm) --R R

which is positive definite, the set of all (n X l) vectors such

that flax - bl Iw is a minimum, is (RA,Rb). The vector of least

norm such that flax - b llw is minimized, is (RA)+Rb.

COROLLARY 1.8.2 Let V = S2 be positive definite (n X n), W = R2

positive definite (m X m), A(m X n), b(m X 1). Then the set of all

(n X i) vectors such that flax - bl Iw is a minim_n, is (RA,Rb).
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The vector of least

is S-1 (RAS-1)+Rb.

THEOREM 1.9 Let A be

Then there exist m X 1 matrices (vectors)

(i) z = x + y

(2) x is in the column space of A

(3) y is orthogonal to the column space of A

'"V"' norm such that IIAx - b Ilw is minimized,

m X n and Z be any m X i matrix (vector).

x and y such that

Any vectors satisfying (I)-(3) above are unique, and

(4) x = AA+z

(s) y = z -AA+z

(6) x y = o

Thus AA + is the projection which takes any column vector (m X i)

into the column space of A; Im - AA + is the projection which takes

any (m) vector into the orthogonal complement of the column space of A.

THEOREM I.i0 For the matrix equation A X B = C to have a solution, a

necessary and sufficient condition is

AA+CB+B : C

in which case, the general solution is

X = A+CB + + Y - A+AYBB +

where Y is arbitrary to within the limits of being consistent with

the demension in the indicated multiplications.

Proof: If X satisfied A X B-- C,

C : A X B = AA+A X BB+B : AA+CB+B.
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Conversely, if C = AA+CB+B,A+CB+ is a particular solution. Clearly,

for the genera/ solution A X B = _ must be solved. Any expression

of the form

X = Y - A+AY BB+

is a solution. The only property required property of A+

AA+A = A

and B+ is

BB+B = B

COROLLARY 1.6.1 A necessary and sufficient condition for the equations

Ax= c

is

x = A+c + (I - A+A)y

where y is arbitrary, provided a solution exists.

+
THEOREM I.Ii A+A, AA , I - A+A and I - AA + are hermitian idem-

0

potent. If H is hermitian idempotent, then H+ = H.

Proof: The proof requires a straightforward application of Theorem i.i.

In genera/, the reversal rule, (AB)+ B+A += as in the case of the

standard inverse, does not hold. R. Cline [Ii] obtained the following

results.

THEOREM 1.12

Then,

Let A and B be matrices with the produce AB defined.

+

(AB) = B1+A1+
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where:

AB -- AIBI

BI = A+AB

= ABIBI+

Proof: The produce AB can be written as

÷

--AA+ : ° IB1B1--AIB1

÷ ÷

Let y = AB = AIB I and let x = BI A I . Then it is only necessary to

show that y and x satisfy the equations in Definition 1.4. From

BIB1 + + + = AI. Nowthe definition of A, we have that A1 = ABIB 1 BIB 1

BIB1+ AIBIBI + +yx = _ A1+ --AI_ + is hermitian. Also yxy = A1 AIB I =

+ BI + +( BIBI +) BI +AIA I AIB 1 = _B 1 = y and xyx = A1 A1 _+ = _+AIAI + =

BI+_ + = x. In order to show that xy is hemitian, we observe first

that using the definitions of A 1 and B1 that

+ +A+_ -- A ABIB 1 = A+A(A+AB)BI += A+ABBI + = BIB1 +

Also, since AI+AIAIBI += AIA1 + , with both AI+A and BIBI + hermitian,

+ + +

BIBIA I AI = AI+_. Substituting A+A1 for BIB1 + gives A1 A1 =

+ +

AAIA 1 A1 = A+AI and so _+_ = BIBI +.

BI+ + + +From this it now follows that xy = _+AIB = BI BIB I BI = BI BI

is hermitian. Since it has been shown that y and x satisfy the

+ BI+AI +"defining equations for the pseudoinverse, x = y . But x =
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It is of interest to show that

conditions imposed upon A and B.

obtained by T. M. E. Greville [I0].

CAB)+ = B÷A+ Lmder certain

The following theorems were

In fact, he defines Ct as

the unique matrix satisfying these two equations.

THEOREM 1.13 If A and B are otherwise arbitrary matrices such

that AB is defined, CAB)+ = B+A+ if and only if both the equations

(1.6) A+ABB*A = BB A

and

Cl.7) BB+A*AB = A AB

are satisfied.

Proof: Multiplying C1.6) on the left by B+ and on the right by

, : C*CAB)*+ using the fact that C÷CC* C*C+C = and using the fact

that CC*C *+ = C*+C*C = C in the form

(AB)(AB)CAB)*+ = AB

gives

(1.8) B+A+AB= CAB)*CAB)*+= (AB)+CAB).

Similarly, taking transposes of both sides of (1.7) gives

(1.9) B AABB --B AA,

and then multiplying on the right by A+ and on the left by CAB)*+

,
and using the fact that C+CC * = C*CC+ = C and CC*C *+ = C*+C*C = C

leads to the equation
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(1.10) ABB+A+ = AB(AB)+.

In view of the fact that CC+ and C C are projection operators on

R(C) and R(C ) respectively, we find that (1.8) and (1.10) express

the fact that B+A+ is the generalized inverse of AB, as defined by

Moore.

Conversely, (AB)+ = B+A + implies

BA = BAABBA .

Multiplying on the left by ABB B and using B*BB + = B gives

* A+A) BB*A *ABB (I = e,

where e denotes a null matrix. As the left member is Hermitian and

I - A+A is idempotent, it follows that

A+A) **(I - BB A = e,

which is equivalent to (1.6). In an analogous manner (1.7) is obtained.

THEOREM 1.14 (AB)+ = B+A + if and only if both A+ABB * and A*ABB +

are Hermitian.

Proof: If A ABB is Hermitian, we have

÷
+AABB* = BB A A,

and multiplication on the right by A gives (1.6).

multiplication of (1.6) on the right by A*+ gives

Conversely,

* +

(1.11) _--AABB*AA = BB A A.
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Since the left member of (I.ii) is Hermitian, the right member is also.

In a similar fashion it can be shown that (1.7) is equivalent to

the statement that A*ABB + is Hermitian.

It will be noted that an equivalent statement to the condition in

Theorem 1.14 is that A+A and BB conlnute and also A A and BB+

commute.

THEOREM l.IS (AB)+ -- B+A+ if and only if

= * *(1.12) A+ABB*A*ABB + BB A A.

Proof: Multiplying (i.12) on the left by A+A gives

(I.13) A A+ABB* *ABB+ + * *= A ABB AA.

Combining (I.12) and (I.13) gives

A+ABB*A*A = BB A A,

and multiplication on the right by A+ gives (1.6). An analogous

process leads to (1.9), which is equivalent to (1.7).

On the other hand, if (1.6) and (1.7) hold, multiplying (1.6)

on the right by A and then using (1.9) to transform the left member

gives (1.12).

Equations (1.6) and (1.7) have a simple interpretation in terms

,
of range spaces. They assert, respectively, that (A) is an

invariant space of BB and that (B) is an invariant space of A A.

In some particular cases this interpretation leads to a characterization

of those matrices B that satisfy (AB)+ = B+A+ for a given A.
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For example, if A is of full column rank, A+A= I and (1.6) is

in_ediately satisfied. Then (1.7) holds if and only if B is a null

_trix or (B) is t_ space spanned by some set of eigen vectors of

,
AA.

THEOREM 1.16

(1.14)

(AB)+ : B+A + if and only if both the equations

A÷AB: B(A )+AB

and

(I.15) BB+A : A AB(AB) +

are satisfied.

*+

Proof: Multiplication of (1.6) on the right by (AB) gives (I.14),

and conversely multiplication of (1.14) on the right by (AB) gives

(1.6). Similarly it can be shown that (I.15) is equivalent to (1.9).

THEOREM 1.17 A necessary condition for (AB)+ : B+A + is that A+A

and BB+ con_nute.

Proof: Substitution of B+A +

on the right by B+ gives

for (AB) + in (1.14) and multiplication

A+ABB+ : BB+A+ABB+.

As the right member is Hermitian, the conclusion follows.

That the condition of Theorem 1.17 is not sufficient is clear from

the example:

[::r [:I B'A"I,.A : , B : , : (0 i), :

As A is nonsingular, A+A = A-IA : I, and the condition is fulfilled.
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It is easily seen that the com_utativity of A+A and BB+

equivalent to either of the conditions

is

A+ABB+A * = BB+A *

and

BB+A+AB = A+AB.

These equations can be interpreted as asserting that (A) is the

direct sum of a subspace of (B) and a space orthogonal to (B) and

,
that (B) is the direct sum of a subspace of (A) and a space

,
orthogonal to (A). These observations reveal something about the

structure of matrices A and B that satisfy (AB)+ = B+A +. It is

easily seen that (1.6) and (1.7) are equivalent to the following two

equations:

(1.16)
(I - A+A)BB*A+A = 0.

(I - BB+)A+ABB + : 0.

Equation (1.16) shows that if B is resolved into the two component

matrices,

B1 : A+AB, B2 : (I - A+A)B,

then not only do we have B1 B2 = e as expected, but also
,

Similar remarks apply to the resolution of A into

AI = BB+A *, A2 : (I - BB+)A *.

B2B 1
= @.I
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1.4 Quadratic Forms

DEFINITION I.S If X is an n X 1 vector whose elements are in the

complex field, then the complex type quadratic form X AX is defined
n n

as !---1 _;1 x-'ixjaij" Similarly if the elements of X are in real

field, then the real type quadratic form xTAx is defined as

n n

!__i _=i x'xa'''l] i S

The following definition will be given only for the complex type

quadratic forms. Similar definitions hold for the real type quadratic

fOrmS.

DEFINITION 1.6 The rank of the quadratic form X AX is the rank of

the matrix A.

DEFINITION 1.7 The quadratic form X AX is said to be positive

,
definite if and only if X AX > 0 for all vectors X _ O.

DEFINITION 1.8 The quadratic form X AX

,
semi-definite if and only if X AX_ 0

is said to be positive

for all vectors X.

THEOREM 1.18 A necessary and sufficient condition for aHermitian

(synmetric) matrix A to be positive definite is that there exists

a nonsingular matrix P such that A = p*p(pTp).

DEFINITION 1.9 A characteristic root of a n X n matrix A is a scalar

such that AX= _X for some vector X _ _. The vector X is

called the characteristic vector of the matrix A.

A necessary and sufficient condition for an eigen vector to exist

is that there should be a solution of (A - XI)X = 0 for which X _ 0.
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Such a solution will exist if and only if det(A -

det(A - I) is a polynomial of the nth degree in

have a zero, real or complex.

THEOREM 1.19 The number of nonzero characteristic values of a matrix

A is equal to the rank of A.

THEOREM 1.20 The characteristic roots of a Hermitian (synmetric)

matrix are real.

THEOREM 1.21 The characteristic values of a positive definite matrix

A are positive; the characteristic values of a positive semidefinite

matrix are non-negative.

THEOREM 1.22 For every sy_netric matrix A there exists an orthogonal

matrix P such that pTAp = D, where D is a diagonal matrix whose

diagonal elements are the characteristic roots of A.

It is sometimes advantageous to break a matrix into submatrices.

This is called partitioning a matrix into submatrices. The following

example will illustrate the above. Let A be an n X n matrix and

write

A

IA21 A22

I) = 0. Since the

k, it will certainly

where All is nI Xml, _2 is nI X (n - ml) , A21 is (n - nl) X ml,

and A22 is (n - nl) X (n - ml).

The product AB of two matrices can be made symbolically even if

A and B are broken into submatrices. The multiplication proceeds as
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if the submatrices were single elements of the matrix. However, the

dimensions of the matrices and of the submatrices must be such that they

will multiply.

THEOREM 1.23 If A

A

is a positive definite syn_etric matrix such that

A11 A12

A21 A22

and if B is the inverse of A such that

B = [BII BI2]

and Aii are each of dimension mi X mi, etc. then
andif B..

ii

(1.17)
-I -I

BI2 = _ AIIAI2B22

-I -i
B21 = . A22AzIBII

e

THEOREM 1.24 If P1 = P0 + AA where P0 is an (n X n)

definite matrix and A is any r X m matrix, then

<118) p l_poI
-I * -i *

P0 A (AP0 A + I)-lAp 0

positive

positive definite, positiveProof: Since P0 is then P01 is

-I *
definite. Hence it follows (AP0 A + I) is positive definite which
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implies (AP01A* + I) =I exists. Therefore

-i * -I * -i *
PIPI 1 = I + P0 A A - P0 A (AP 0 A + I)-I(AP01A* + I)-IA

=I.

The above inversion formula (1.18) has been used extensively in

the sequential estimation theory for updating estimates as more samples

are observed [12] and [13]. It is of interest to know when a formula

similar to (1.18) holds for pseudoinverses since in some applications

P0 may be Hermitian positive semi-definite.

Tr_OREM 1.25 If P0 is a positive semi-definite (Hermitian) m X m
,

matrix and A is an r X m matrix with Pl = P0 + A A then

(1.19) Pl+ + + * + * "lAP0+= P0 - P0 A (AP0 A + I)

if, and only if, the null space of A contains the null space of P0"

+

Proof: Since P0 is positive semi-definite, then P0 is positive

• + *

semi-definite which implies x (AP0 A + I)x >_ 0, x E Xm and

• + *

x (AP 0 A + I)x = 0 if and only if x = _. Hence (AP0+A * + I)-I

exists. Suppose N(A)mN(P0). Then N(PI) = N(P0) since

N(PI) = N(P0) _ N(A). To show that Pl+Pl x = x, for each xER(P0+).

xER(P0 +) + + * + * + * -I + *Let , then Pl Plx --x + P0 A Ax - P0 A (AP0 A + I) (AP0 A + I).

Ax --x. Since Xm = N(P 0) + R(P0+), then xcX m can be written as

+ pl+Pl x +x = xI + x2 where XlER(P 0 ) and x2EN(P0). Thus = Pl PlXl = x.

Hence Pl+Pl is a projection operator on R(P0+).

+ p0+ + , + , -iAP0+"Conversely suppose Pl = - P0 A (AP0 A + I) Thus it

follows R(PI+)C R(P0 +) and N(PI] = N(P0)_ N(A) which implies
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R(PI+)C R(P0+) and N(PI)CN(P0). But the only way this can be true is

for R(PI+) = R(P0+) and N(PI) = N(P0) which implies N(A)_N(P0).

To show that (PIP1+) = PIP1+ and (PI+PI) = (PI+PI) observe

that

(PIPl+) * + * + * + * + * -iAP0+]*= [PoP0 + AAP 0 - A (AP0 A + I)(AP 0 A + I)

= PoP0 +

+

= PlPl •

÷ *

A similar argument shows (PI P1 ) --PI+PI"

1.5 The Crout Factorization

Let P = (Pij), i,j=l,2, ....,n, be positive definite, real, symmetric

matrix. It is shown in Gantmacher [15], that P has a factorization

(1.2o) P = rr T,

where T is lower-triangle, with positive elements on the main diagonal.

If the existance of the factorization (1.20) is given, then it is easy

to show how to compute the components tij of T in the order

ij "= ii, 21, ..., nl; 22, 32, ..., n2; ..., nn.

Since t.. = 0
1J

(1.21)

for j > i (1.38) states that

Pij = i tiktjk •
k=l

First we compute

Pll I/2(1.22) tll = .
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The other elements in the first column are

(1.z3)
-I

til = tll Pil' i = 2,3p...,n.

If the preceding columns

diagonal element.

(I.24) tjj = (pjj

k < j have been computed, we compute the

If j < n, the elements below the diagonal are computed from the formula

i-I tikt
-l(p _ , n.

(1.Z5) tij = tjj jj =1 jk ), i = j + 1, ...
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Chapter II

MINIMUMVARIANCELINEARUNBIASEDESTIMATION

In this chapter we will formulate and prove the well-known [I],

[2], [3] Gauss Markov Theorem. Briefly, the theorem directs our

attention to a simple form of a minimum variance linear estimator which

is remarkably applicable to most any kind of estimation problem. It

has at least two forms and is used directly and indirectly in almost

every field of the sciences in which data is collected to estimate a

parameter.

2 .I The Classical Form of the Gauss Markov Theorem

The theorem as is usually stated is as follows:

THEOREM 2.1 Let y = Hx+v be a linear statistical model, where y

is a p x 1 vector of observations; H is a p x n known mapping

matrix of rank p <__n; x is a n x 1 unknown state (parameter)

vector and v is a p x 1 random vector such that

Ev=

Eo T = R,

a positive definite covariance matrix. Then the minimum variance
^

linear unbiased estimator of x, denoted by x is given by

(2.1) x = (HTR - 1H) - 1HTR- ly.
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^ ^

Proof: Since we require that x to be linear and unbiased then x

^

must be of the form x = By and Ex = x, respectively on selecting

(2.2) B = (HTR"IH)-IHTR-1

^

we see that x

Consider

Hence,

where

write

is indeed linear.

E(x) = E[ (HTR-IH) "Ln K. y]=%'-1, (HTR-IH)-IHTR-IE{y }

= (HTR-IH)-IHTR-IE(Hx+v)= (HTR-IH)-IHTR-IHx = x.

^

x is unbiased.

Let x be any linear estimator of x. We can write x as

x =By

B is a mapping matrix. Without loss of generality we can

B =B+C,

where

Then

B is defined by (2.2) and C is the residual matrix B -B.

(2.3) x = x + CY.

We require that x to be unbiased, that is,

x= Ex = E(x + CY)

= E(x+ C[Hx+ v)

= x + CHx,

which in turn requires that

(2.4) CH = ¢.
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or

Consider the covariance matrix of x

* *T * *
C(x ,x ) = E(x - x)(x - x) T

= E(x + CY - x)(x + CY - x) T

^ x)T] ^ x)T]= v.[(x - x)(x - + E[CY(x -

+ F.[(x - x) yTcT1+ E[cyyTcT]

denoted here by

* ^

C(x , x *T) = C(x, x T) + E[C(Hx + v)(x - x) T]

Consider the term

+ E[(x- x) (}tx + v)Tc T] + E[cyyTc T]

E[C(Hx + v)(x - x) T] = E[(Otx(x - x) T] + E[Co(x - x) T]

+ E {Cv (HTR- 1H) - 1HTR- 1y}

= E{Cv[(HTR-1H)-IHTR-I(Hx + v)] T}

= E{CV x HTR-1H(HTR-1H) }

+ E cvvTR-1H(HTR-IH) -1

= 0 + CR R-IH(HTR-1H) -1

= O[(HTR-IH) -I = 0

It follows then that

* *T -I
C(x ,x )= (HR-1H) ÷ cP,cT.
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In order to minimize the variance of the elements of the vector we

minimize the diagonal elements of CRCT, a positive semi-definite

matrix. That is, we require that the diagonal elements of CRCT

be zero. But in order for the diagonal elements to be zero and

CRCT to be positive semi-definite, CRCT -- 0. But R is nonsingular,

hence C must be the null matrix.

COROLI2_Y 2.1.1 If R in (2.1) is simply o2I, then (2.1) reduces to

(2.4) = (.T.)-I.Ty

the least square estimator for x, whose covariance matrix is

(2.s) (HTH)-l.

The proof is given by replacing R by o21 and noting that the

solution minimizes the error sum of squares,

T Hx)T(ye e = (Y - - Hx)

n 2

= !=lei

where e = {el}.

By using the properties of the pseudo inverse of a matrix an

easy extension of the Gauss-Markov theorem is possible. In order to

obtain a yet more generalization of the theorem involves rather

complicated range space arguments hence that generalization is given

in Chapter III.
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THEOREM 2.2 Consider the linear model described by the vector equation

y = H x + v

pxl pxn nxl pxl

where, E(v) = @ and E(vv T) = R is positive definite. The minimum

^

variance linear estimate x of x such that E(x)--x whenever x

is in the range space of HT is given by

(i) For rank H = n <p

x = (HTR -1H) + HTR-ly = (HTR -1H)-IHT R- ly

R^= (HTR-1H) + = (HTR-1H) -1
X

(II) For rank H = p < n

^

x = (HTR-IH+HTR'Iy = H+y

R_ = (HTR-IH) +H+RH +T

A ^

Proof: We require that x = By and E(x) = x whenever x is in

the range space of H. These requirements imply that E(x) = BHx,

which implies that for x in the range space of HT,

H+Hx = BHx = x

so that BH : H+H on the range space of H+. Moreover, ][ECx)- xll

is minimum for x in the range space of Hr. The covariance matrix

^

of R_ of the estimate x is given by R_ = BRBT and must be

minimized subject to the constraint BH = H+H. To do this we adjoin

constraint BH --H+H to BRB T using a matrix Lagrange multiplier

and find conditions necessary to minimize

Q = BRB T + IT[H+H - HTB T] + [H+H - BH]I.
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Employing the variational technique we obtain the first variation

6Q = 6B[RB T - H_] + [BR - kTHT]6BT.

Since aB is arbitrary, we find that setting aQ = ¢ implies

or

BR - xTH T = ¢

B = xTHTR-I.

Multiplying the latter by

H+H = xTHTR-1H

H we obtain

whe re

In case (1), rank H = n <_p so that M

(Lemma 1.8) implies H+H = I so that

XT = M -I = M+

B°M +HTR-1--M-IHTR-1

so that using (Theorem I.i0) and setting HTR-IH = M we have

_,T = H + HM+ + Y[I - MM+]

Y is arbitrary to within having the dimension of _T.

is nonsingul ar.

and

x = (HTR-IH) +H R y = (HTR-IH) +HTR-Iy

R = (HTR-IH) + = (HTR-IH)

This completes the proof of case (1).

_breover,
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In case (II), rank H = p in so that by (Lenmm 1.8) we have

HT+H T = I. Applying (Theorem 1.12) with A = HTR -I and C = H we

have

C1 = A+AX = (HTR"I)+HTR-1H

and

A1 = ACIC _ .

It is easy to see by direct substitution into the four defining

equations for (HTR-I) + that (HTR-I) + = RH+ and hence that

CI = RHT+HTR'IH = H

AI = HTR-IHH + = HTR -I.

Finally we have

(HTR-IH)+ = CIAI++ = H+RHT+

^ ^

and the estimate x of x is

x = {(HTR-IH) + + Y[I - (HTR-IH) (H+RHT+) ]}HTR-Iy

or

^

x = (HTR-IH) = HTR-Iy + Y¢ = H+y.

This completes the proof of case (II).
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2.2 The Recursive Form of the Estimator

In real time estimation problems (filtering [4], [S], [6]) it is

necessary that the estimator be written in a recursive form. This can

be done easily by the following fomulation:

^

where xN

£.:___-___+ E..v_..1_.-v.r_.

is the best estimate given N data vectors Yi (pxl) where

YN _-"

m

Y2

Q

a Npxl

vector of observations

HN _-" hI eN = I" el

e2

I •

J. eN

is Npxl

the Npxl

mapping matrix relating YN' X the parameter vector and

error vector eN in the linear model

YN = HNX+eN"
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Assuming that the covariance matrix of

then

vN --Coy(%)=

%

VII ¢ ... ¢

¢ V22 •.. ¢

¢ ¢ ... VNN

is block diagonal, that is

^ + [,T V-I , T -I -114 -__-_"_-_ _-_N-_-_÷_v_] _VN__YN__

T-I
+ h_VN_Y N]

or

^ ^ T -I T -i -I T
XN = XN_ 1 + [H__IVN_IHN_I + h_VN_h N] [HN_IVN_IYN_ I

T-I+

which reduces to

^

x_ ___ _ -_ ÷h_v_h.1-_h_v-_E_.-_.__1= + [HI__1VN_ 1HN_1

s_ce

-i T -I -I,T ,-I ,= [H__IVN_IH N] r_N.IVN_IIN_ 1.

A

A recursive fom for the Coy XN can be obtained using the "inside-out"

rule for inverting the s_n of a positive-semi definite matrix and a



39

positive definite matrix (See page 25).

^ t4v Coy XN = 1 -i

That is,

[__iVNiii__i T -i -i

,.T v-i, )-I: _'5_-1N-ImN-I

(4_iVNiiHN_i)-iT + T -i -i -ihNhI_I[VNNhN(I__IVN_IHN- 1) ]iN]

.T_-Z. )-i(_N N-IrLN-I : Coy (XN_ I)

- Cov(XN_i)q[V_+h_Cov(%:_i)_]-ihNCoy(iN_l),

which gives a recursive way for computing Cov(_) as a function of the

Coy(iN_l).

This technique allows one to invert large covariance matrices by

simply inverting a smaller dimensional matrix.

2.3 The Gauss-Markov Theorem When the Parameter Vector is Random

In section 2.1 the parameter vector x was assumed to be a constant

vector. There are instances when it is natural to assume that the

vector x in the linear model

(2.6) y = hx + v

is random with the following statistical properties

(2.7) E(x) : _x

(2,8) ri(X-"x) (X-"x) : _x
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The vector v is a p x i vector of random elements such that

(2.9) E(v) -- ¢

(2.1o) E(vvT) = R

(2.11) ECvxT) : ¢

From (2.7) - (2.11) it follows easily that

(2.12)

(2.13)

Mso

(2.14)

E(y): hu x

Ryy = E(y - hvx)(y - hlax - hvx )T

= E(hx + v - hux)(hx + v - hvx)T

: E[hCX-.x) (X-vx)Th T + v(X-.x)ThT + hCX-Vx)V T + vvT]

R =hR hT:R
yy xx

Rxy : E[X-.x) (y-_y)r ] : E[(X-.x)(X-ux)Th T + vT] : RxxhT.

We will consider the class of estimators defined by the formula

^

X : a +Ay

where a is a vector of real numbers, A a matrix defined on the real

numbers selected so that

(2.15) E[x - x] : ¢

and

(2.16) Q = E[(x - x)(x - x) T]

is minimized in the usual sense.
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Consider the constraint (2.15)

¢ - E(x - x) = E[a +Ay - x]

or

¢ = a + Ah_ x _x

Two cases are immediate. These are

(i) _x is known

(2) Ux is unknown.

THEOREM 2.3 Let a + Ay be a linear estimator of x

model (2.6). Then the optimum values of a and A

E[a + Ay - x][a + Ay - x] T

in the linear

for which

is a minimum are

(2.16) a = Ux - Aku x

* TE hT ÷(2.17) A = Rxxh R] -1

The variance of the estimator is

Proof: Let

RxxhT[hTRxxh + R]-lhR .

^

x = a ÷ Ay be an estimator for x. Let _x be known and
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Q = E[(x- x)(x - x)T]

= E[(a + ay - x)(a + Ay - x) T]

T yAT T=aa + a_ - ap X

A necessary condition for Q to be minimal is for the first variations

in Q with respect to a and the first variation in Q with respect

to A to be simultaneously the null vector and the null matrix,

respectively. Let 8aQ and 6AQ denote these variations. Hence

8aQ = a[aT + _T _ Px] + [a-- A_y - px]6a T

6AQ _A[_ya T (Ryy r T r= + + _y_y)A - (Ryx + Py_x) ]

[a_y+ A(Ryy+ _y,T)- (RXy+ UxpT)]6AT.

The constraints 6aQ m ¢ and 8AQ - @ for all _a and 6A respectively

implies that

a + A _y - Ux --¢

and a_y+ A(Ryy + _y_T) (%+ _x_T) . The first condition implies

a --Ux - A _y. Since _y = h_x, it follows that

a = Px - A hpx.

The second condition implies that

A = = + R] -I
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the desired results. We note that

^

(2.18) x --Vx + Rxy_(y-h_x).

A

The covariance matrix, _, for x follows easily from the definition

= RxxhT[hTR_h + R]-lh Rxx.

The proof is complete.

It is clear from (2.16) or (2.18) that if Ux is not known then

the estimate (2.18) is not computable. Consider the case for _x is

not known.

THEOREM 2.4 The optimal values of a and A for which

(i)

(ii)

E[a + Ay - x] = 0 for all values of _x

E[(a + Ay - x)(a - Ay - x)T is a minimum

are

a = 0

A = (hTR-lh)-IhTR "I.

The covariance matrix of the estimator is

(hTR-lh)-I.
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Proof: The condition (i) implies that

a + Ah _x - _x = 0

for all _x" This in turn implies that

a + (Ah - I)vx --0

for all Vx" Hence

a=¢

Ah-I=¢

or we select A so that

Ah= I.

Let

(2.19) Q : E[Ay - x)(Ay - x)T] + IT[l - hTA T] + [I - Ah]l

whe re

Ah=I

is a vector of Lagrangian multipliers.

and y : hx + v into (2.19) we get

Q = ARA T + _T[I - hTAT] + [I - Ah]_.

Substituting

Equating the first variation of Q with respect to A to zero one

obtains

(2.20) AR - kTh T : ¢

AR = xThT

(2.21)

A : _,ThTR-1
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Multiplying both sides of (2.21) by h on the right

I = /ThTR-Ih.

From (2.21), it follows that

A = (hTR-Ih)-IhTR -I.

2.4 On Estimating a Subvector of x

The minimum variance linear unbiased estimate for x in the

linear model

y=hx+v

is by Theorem 2.1

(2.22) x = (hTR-lh)-lhTR-ly

Let x be partitioned such that

[X (I)

x = I

Ix(2)

where x (1) is q x 1 vector and x (2) is n-q x 1 vector. Suppose

we wish to estimate x (I) by a minimum variance estimator and yet not

estimate the total vector x by using (2.22).

THEOREM 2.5 The minimum variance linear unbiased estimator for x (I) ,

^

the first q elements of x is given by the vector (2.24).
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Proof:

covariance matrix R_ of _:(1).

(2.23) Rx + [(hlh2 )T R-l(h h )]-I =l,_IR-lhl_'_.T

hTR -lhI

^

By partitioning the covariance matrix of x we can write the

h_R-lhl

hTR-lh2

Inverting the matrix (2.23) we find that

R_(1) = [hlR-lh I - hlR-lh l(hTR-lh2)-lhTR-lhl ]-1

= [hI(R -1 _ R-lhl{hTR-lhg}-lhTR-1)hl ]-1

Following the fore of (2.22) we write

(2.24) x(I) = [hI(R -I - R-lhl{hTR'lh2}-lhTR-1)hl ]-I

hI(R -1- R-lhl{hTR'lh2}-lhTR-ly.

On taking the expectation of x (I)

E x (1) = [hl(R-1 R-lhl{hTR-lh2}-lhzR-lhl ]-1

hlT(R-I R-lhl{hTR-lh2--i T -1- } hzR (hlh2)

= x (I)

X

x (1)

x(2)

since

(R -1 R-lhl{hTR-lh2}-lhTR-lh2 x (2) _-

^ ^ (1 )
The fact that x is minimum variance implies that indeed x"

minimum variance.

is
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This partitioning can help in eliminating the necessity of computing

unwanted parameters which may represent systematic sources of errors.
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Chapter III

A GENERALIZATION OF THE GAUSS-MARKOV THEOREM

This chapter contains a generalization of the Gauss-Markov Theorem

based on the properties of the generalized inverse of a matrix as defined

A

by Penrose. A minimum variance vector estimate x of a parameter

vector x is given for the linear model of less than full rank. Since

linear unbiased estimates may not always exist for this case the unbiased

constraint is replaced by the more general constraint that the norm

^

liE(x) - xll

is minimized.

3.I Introduction

Several authors [i], [2], [3], [4], [S], and [6] have considered

least square and minimum variance estimation of parameters in a less than

full rank linear model,

(3.1) y = Hx + e.

In (i) y denotes a p x i vector of observations; H a known real

p x n matrix; x an n x 1 vector of fixed but unknown parameters to

be estimated; and e a vector of random errors such that E{e} =

and E{ee T} = V, a positive definite matrix, where E and _ denote the

expectation operator and the null vector, respectively.

It is well-known that in the full-rank case (rank of H equal to

n) that the Gauss-Markov theorem yields the minimum variance linear
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^

unbiased estimator x where

(5.2) x = (HTv-1H) -1 HTv-Iy.

Its covariance matrix R^
X

(3.3) (HTv-IH) -I

is simply

In [6] Decell and Odell showed that if the rank of H is p < n,

then

^ H+(3.4) x = y

and

(3.5) R_ = H+_I +T

+

where the superscript denotes the generalized inverse [7] and [4].
^

It is interesting to note that x in this case is also the least square

estimate of x.

For practical reasons most investigators studied the problem of

minimum variance estimation for those parameters or those linear functions

of parameters which are linearly estimable [8]. It is our purpose in

this chapter to formulate a generalization of the gauss-Markov theorem

which will include the results (2) and (4) as special cases and discuss

briefly the meaning that can be attached to the estimator.

3.2 Notation and Preliminaries

^

We seek a linear, minimum variance, unbiased estimator x of x,

^

if such an estimator exists. That is, if x = By, we are to find a real
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matrix B such that Ex = x and _-- E[(x - x)(x - x)Tl is minimt_n

in the sense that if z is any other linear unbiased estimate of x and

Vz = E[(z - x)(z - x)T], then qT[v - V_] q > 0 for any p x 1 vector
^

q -- ¢. These conditions imply that E(x) = HBx -- x so that BH -- I,

where I is the n x n identity matrix.
^

If the rank of H is p < n we cannot require that E(x) -- x,

since in this case H has no left inverse. We can, however, modify

this requirement by requiring the norm liE(x) - xll be minimum and

then in turn select from this class of linear estimators one which has

minimt_n variance with respect to the range space of HT. The norm used
1

here is llE(x)-xll = [(E(x)-x) w (F(x) - x)]T. Such an estimator will

be called a best linear estimator.

To facilitate reading, we list again some properties of the Penrose

[7], [4], [9] pseudo-inverse used in obtaining this result.

Pl) For every matrix A there exists a unique matrix A+

such that

AA+A=A

A+AA+--A+

(A+A)T = A+A

(AA+)r _-AA+"

We call A+ the pseudo-inverse of A.

÷P2) (AC)+= CI where AC= AICI, CI = A+AC, and _ = AC CI

PS) (A+)r = (AT) +

P4) All solutions of the matrix equation AXB = C are given by

X = A+CB + + y - A+AYBB + if and only if AA+CB+B = C where

Y has the dimension of X.
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P5) Range of AT equals the range of A+, that is

R(A T) = R(A+). A+A and AA+ are, respectively, the

projection operators on the range spaces of A+ and A.

P6) For any n x n matrix A and vector z, z = zI + a2

where ZlcR(A+), a2¢N(A), and zI is orthogonal to z2.

3.3 The Main Result

We are now ready to establish a generalization of the Gauss-Markov

Theorem.

THEOREM 3.1 Consider the linear model described by the vector equation

y = H x + e

pxl pxn nxl pxl

where E(e) = _ and E(ee T) = V is positive definite. The best

^

linear estimator x of x is given by:

^

x--M%Tvly

and

V^=M +
X

where

M = HTv-IH.

^

Proof: We require that x = By and F.(x) = x whenever xER(HT).

A

These requirements imply that E(x) = BHx and (P5) implies that

for x in R(HT),

H+Hx = BHx = x.
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Let

Then

x = xI + x2 where XlsR(HT) , x2EN(H ).

liE(x) - xll = I IBHx1 + _x 2 - xll = I IBHx1 - xll = I lxzll.

Thus it follows that IIF(_) - xll is minimum with respect to R(H T)

^

for x_R(HT). The covariance matrix Vx of the estimator x is

given by Vx -- BVBT and must be minimized subject to the constraint

BH = H+H. To do this we adjoin the constraint BH = H+H to BVBT

using a matrix Lagrange multiplier X and find conditions necessary to

minimize

Q = BVBT + xT [H+H - HTBT] + [H+H - BH]X.

Employing the variational technique [3] we obtain the first variation

_Q,

_Q = aB[VB T - Hxl + [BV- xTHT] 8BT.

Since _B is arbitrary, we find that setting 6Q -- ¢ implies

BV - xTHT= ¢

or

B= xvHTV-1.

Multiplying the latter by H we obtain

H+H = xTHTv-1H
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so that using (P4) and setting HTv-IH = M we have

T= M++ yCI-

where y is arbitrary to within having the dimension of XT.

this we need to show that

To see

H+HM+M = H+H.

H+H(HTv-1H) + [HTv-1H) = H+H.

It follows that R(M +) = R(MT) : R(M). Hence we must show that

R(M) = R(HT). We observe that R(HT) _ R(M) and N(H) _N(M).

Suppose there exists xeN(M) such that x_N(H). Then Hx # 0 and

Mx = 0. But since V-I is positive definite xTMx # 0 which implies

Mx # 0. This is a contradiction. Hence N(H) : N(M). Since R(M T)

and N(M) are orthogonal spaces and their direct sum is the n-dimensional

vector space Xn, it follows that R(M) : R(HT). We now observe that the

columns of H+H are in R(M +) thus M+_H+H = H+H. Taking the transpose

of both sides gives

H+HM+M = H+H.

Assume that the rank of H is

B = _,THTv- i

= (M++y [I

q !rain (n,p). Then

_+])H?V -I

: M+HTv -1 + y [I - Mq+] HTv -1.

To establish the second term is ¢ , i.e. [I - _+]HTv -I = ¢,
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we observe that [I - MM+] is an orthogonal projection on the null space

of M+. We need to show that N(M +) = N(H). Since M = HTv-IH, then

it certainly follows that N(M) = N(MT). Also note that N(ND _---N(H).

Thus suppose there exists an x_N(N0 such that x_N(H). Hence, it

follows Hx R(H). Since V-I is positive definite, then V -I does not

rotate Hx into the null space of HT. Hence HTv-IHx _ 0, which

implies x_NCM). This is a contradiction. Thus N(M0 = N(H). Now

N(M) = N(MT) •= N(M +) which implies N(M +) = N(H) and consequently

(I MM+)HTv -I = @ since ROH T) = N(H)-L, where (.)/- denotes the

orthogonal complement of (.). Hence

^ M%TV-Iyx=By=

and the covariance matrix

R,_ = BVBT = M÷I_I+T = M+

the desired results.

It should be noted that if the rank of H is equal to nip, then

^

H+H = I and x reduces to (3.2) and its covariance matrix is given by

(3.3). If the rank of H is p in then HH+ = I, (HTv-I) + = VH T+ and

(3.4) and (3.5) follow.

3.4 Comparison of Least Squares and Minimum Variance Estimates of

Regression Parameters

It is of interest to compare the least squares estimate of the state

vector to that of the minimum variance estimate of the state vector.
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Magnessand McGuire have been able to give an extensive analysis in

comparing these two estimates whenever the regression matrix of the

linear model is of full-rank (colums linearly independent). They were

able to establish the inequality

<_ C,
max mln

where VLS and VMV are the covariance matrices of the least squares

estimate and minimum variance estimate, respectively. _max and Imin

are the maximum and minimum eigen values of the correlation matrix p

of the error vector. The above inequality places an upper bound on how

much is lost by use of the least squares estimate of the state vector

to that of the minimum variance estimate of the state vector.

In the following theorem it will be shown that the least squares

estimate of the state vector will have the same covariance matrix as

that of the mean-square-error estimate of the state vector, whenever

the regression matrix of the linear model has all of its rows linearly

independent.

THEOREM 3.2 Consider the linear model described by the vector equation

y = H X + e

pxl pxn nxl pxl

where E(e) = _, E(ee T) = V is positive definite, R(H) = p. Then

the covariance matrix of the least-squares estimate of the state

vector equals the covariance matrix of the mean-square-error estimate

of the state vector.



Proof: The least squares estimate of the state vector is

^

xLS = (HTH)+ HT

$7

÷
=Hy.

The corresponding covariance matrix is

vLs-_

The mean-square-error estimate of the state vector is by Theorem 3.1

^ ÷

x=Hy.

The corresponding covariance matrix is

V ^ = H+VH T+.
X

Thus it can be seen there is no loss in using the least squares

estimate whenever the rows of the regression matrix are linearly

independent.
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Chapter IV

THE GAUSS-MARKOV THEOREM AND ITS

RELATION TO CONTINUOUS RECURSIVE ESTIMATION

Kalman [i] noted that there existed a direct relationship between

the so-called recursive estimators associated with dynamic linear models

and the minimum variance unbiased estimator for a fixed I parameter

vector related to an observation vector by the following linear model:

(4.1) y(t) = H(t)¢(t,T) x (T) + v(t)

where y(t) is an observed p x 1 vector function of the real variable

t for to <_t <_T. Also, H(t) and ¢(t,T) are known p x n and

n x m matrices whose elements are real valued functions of t; x(T) is

an n x 1 fixed vector of unknown parameters we wish to estimate; and

v(t) is a random p x 1 vector of random real valued functions of t

such that,

(4.2) E{v(t)} = 0 for to <__t <__T

and

(4.3) E{v(t)v(s) T} : R(t) 6(t,s)

where

E{.}

respectively.

I If the parameter vector x(T)

for all tO <__t <_T and Ex(T)

the estimate defined by (4.6) is Still best.

_(t,s) : i, 0 if t = s or t _ s, respectively. The symbols

and {. } denote the expected value and the transpose of {.},

is random and independent of v(t)

is not known it can be shown that
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4.1 The Gauss-MarkovTheorem for Continuous Data

The following definitions and theorems are basis for the logical

development of the relationship:

^

DEFINITION 4.1 By a linear estimator _ (for continuous data Y(t)

a linear combination of the elements of x(T), say

(4.4) II= pTx(T)

of

we mean

(4.5) _ : IT wT(t)y(t) dt

to

where p is an arbitrary but known constant vector, and w(t) is an

arbitrary (at least piecewise continuous) vector function of the real

variable t.

^

It is clear that 11 is a random variable, since it is a function

of the observations Y(t). The Gauss-_rkov theorem notes that by

selecting w(t) properly one obtains a minimum variance unbiased linear

estimator for 11 which yields a minimum variance unbiased estimator for

x(T) if the vector p is chosen as the unit vector which forms a

basis for the n-dimensional Euclidean space.

Consider the following Gauss-Markov theorem for continuous data:

THEOREM 4.1 The minimum variance unbiased linear estimator x(T)

^

the linear model defined by (I) is x(T) where

(4.6) xCT) : M-I(to,T) IT CTct,T ) HT(t) R-l(t) yCt) at

t o

in
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(4.7) M(t0T) = fT _T(t,T ) HrCt) R-l(t) H(t) @(t,T) dt

t o

and in (4.3)

R(t,s) = R(t)6(t,s) where _(t,s) = 1 for t = s, = 0

for t _ s.

Proof: In (4.5) let

w(t) : R-l(t) H(t) ¢(t,T) M-l(t0T)P.

Since M-I(t0,T) is symmetric it is straight forward using (4.7) to
^

show that _ is an unbiased estimator for H, that is E(_} -- _.

^

Let _ _ _ be any other unbiased estimator for _, then we can

write

* fT(4.8) II = [w(t) + r(t)] T y(t) dt.

t o

Since ER = R, it follows that

(4.9) fT r(t) H(t) @(t,T) dt = 0

t o

Consider the variance of n, that is

Vat (II) = E[/T[w(t) + r(t)] T v(t)dt]

t o

= E{zT fT [s(t) + r(t)] T v(t) vT(s) [w(s) + r(s)] T dtds}

t o t o
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= fT wT(t) R(t) w(t) dt + 2f T rT(t) RCt) w(t) dt

tO to

+ fT rT(t) RCt) rCt) dt.

t o

Note that

Var(_) = fT wT(t) R(t) w(t) dt,

t o

fT r(t) R(t) r(t) dt > 0

t o

since

[t 0,T]

R(t) is positive definite for all t in the interval

and by (4.9) and the definition of w(t)

fT T(t ) R(t) w(t) dt = fT T(t ) R(t) R-1Ct) H(t) _(t,T) dt

t o t o

M-1 (t0,T)p

=0.

Hence,

A

Var (II) > Var II

for all r(t), and equality holds for r(t) - 0.

If p = el, i = I, ..., n the unit matrix with unity in the ith

position, then the minimum variance linear unbiased estimator for X(T)

follows and is given by (4.6).
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4.2 A_I)ynamic Model

In application associated with linear dynamic filters the "so-

called" state transition matrix @(t,T) is obtained from a system of

linear homogeneous differential equations which usually appear in the

form

(4.10) dx(t) _ f(t)x(t) + G(t)u(t)T-

where the vector u(t) may be one of the following

1) u(t) : 0

2) u(t) is a continuous time series from a random

process such that

(4.11)

(4.12)

E{u(t)} = 0 for all

E{u(t)uT(s) } = QCt,s).

t

Usually Q(t,s) is asst_ed to be

(4.13) QCt,s) : Q(t) a(t,s)

where

I if t=s

(4.14) a(t,s) :
0 if t¢s

the so-called "white-noise" case.

For given x(t), t, T the solution of (i0) is well-known

(4.1S) x(T) : ,(T,t)x(t) + fT ,(T,s) C(s) uCs) as
t
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where ¢(T,t) is a non-singular matrix such that

(i) ¢(T,t) : ¢(T,tl) ¢(tl,t ) t < t I <T.

d¢ (T,t)dt = @(T,t)(ii)

Generally one knows that

(4.16) y(t) : H(t) x(t) + v(t)

and from (4.15) one obtains the transition matrix _(t,T), that is

(4.17) x(t) = _-l(T,t) x(T) + _-l(T,t) I T _(T,s) G(s) u(s) ds
t

We shall consider here the case where u(s) = 0, and later the other

case , that is

x(t) : ¢(T,t) x(T)

where

(4.18) _(t,T) : ¢-l(T,t).

Note that from (i) that

-l(T,t ) : ¢-l(tl,t) ¢-l(T,tl)

or

(4.19) ¢(t,T) = @(t,t 1) ¢(tl,T).
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Substituting (4.18) into (4.16) one obtains the linear model defined

by (4.1) and Theorem 4.1 applies.

4.3

one can give a recursive form of the estimator

that t o < t 1 < T. Then

^

The Recursive Form of x(T).

Using the linearity properties of the integral operator and (4.19)

x(W). Let t 1 be such

x(T) = M-I(toT) _1 cTct 1,T) cT(t,tl)HT(t)R-l(t)y(t) dt

t o

+ fT cT(t,T)HT (t)R-l(t)y(t)dt

t 1

Also

M(t0T ) =

t

i 1 ¢T (t 1 ,T) cT(t,tl)Hr (t) R-1 (t)H(t) ¢ (t,tl) ¢ (t 1 ,T) dt

t o

+ £T ¢T(t,T)HT(t)R-I(t)H(t)¢(t,T ) dt

t 1

= cT(t 1,T)M(t 0,tl)¢(tlT ) + M(tl,T).

Hence

(4.20) x(t) : [¢T(t 1,T)M(t0,t 1)¢(t 1,T) + M(t 1,T) 1-1

[¢T(t I ,T)M(t 0,tl)x(t 1) + M(t I ,T)x(T) ]
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where

* fTx(T) : M(tl,T) _T(t,T)HT(t)R-I(t)y(t) dt.

t I

Note that by (4.3) that x(T) and X(tl) are independent, and (4.20)

is the familiar formula for combining independent unbiased estimators

of x(T).

Let

and x(t)

_(T) = ¢-lCtl,T)x(t 1)

be the unbiased estimators of x(T) since

_(T) _-1 x(T): (tl,T) x(t 1) :

and

Ex(T) : x(T).

Also we note that

Var _(T) : _-1 ,T) M-1(t I (t0,t 1) _-T(tl,T)

: [¢T(tI,T ) M(t0,) _(ti,T)] -1

_-_oI

and

* M-I
Var x(T) : (tl,T).
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Hence (4.201 can be written as

-1
x(T) = [M(t0,T ) + M(tI,T)] [__(T) + M(tI,T ) x(T)]

= [ (Var _(T) -1 * -i] -i+ (Var x) [(Var _(T)-I _(T)

* -I*
+ (Var x(T) x(T)]

or equivalently

^ * * -i
x(T) = Var x(T)[Var _(T) + Var x(T)] _(T)

* -1
+ Var _(T)[Var _(T) + Var x(T)] _(T),

a form of the Kalman Filter.

4.4 A Modification for Correlated Noise

Suppose that the assumption (4.3) is replaced by

RCs,t)=

where T = Is - t l. That is, the stochastic process from which y(t)

is a time series is covariance stationary.

We define (if the integral exists)

P.(m) = f eimz RV(T) dr
--OO

sometimes called the power density spectrum [2]. If

w(t) = 7 g(T) v (t- 3) dT,
--GO

then
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w(_) = G(_) V(,,,)

where W(m), G(m) and V(m) are the Fourier transform of wCt), g(t),

and v(t), respectively. Also it is straight forward to show that

w(_) w (_) : G(_) G (_) V(_) V (_)

Vw(,.,) -- IG(_)12 Pv(_).

If we require w(t) to be uncorrelated, that is,

E[w(t)] :

and

Ew(t)w T (t) = Rw(t) 6 (t,s)

then

pw(_) = c

where C is a constant. Let C = i

[ 1 .]1/2
G(_)=

then

if G(m)

But

exists for all m.

G(m) = F(g,t), the Fourier transform of

g(t) = F .l(G,to).

g, hence

the inverse Fourier transfom of G(_).
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It is irmnediate if

> o

for all m then G(m) is well defined.

g(t) is defined we simply compute

7(t) = 7 g(T) y(t - T) dT

_(t) = J" g(T) h(t - _) dz

For those cases in which

and consider the model

7(t) = [T(t)¢(t,_) x(_) + _(t)

where

_(t) = J" g(z) u(t - z) dT = re(t).

The conditions of Theorem 4.1 are valid and (4.6) can be used for

estimating x(T) if y(t) is replaced by _(t); H(t) is replaced by

F[(t); and R(t) replaced by _¢(t).

4.5 References

[i] Kalman, R. E., "A New Approach to Linear Filtering and Prediction

Problems,"Trans ASME, Series D, Journal of Basic Engineering 82,

1960, pp. 34-45.

[2] Bendat, J. S. and Piersol, A. G., Measurement and Analysis of Random

Dat____a,John Wiley and Sons, Inc.
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Chapter V

MATRIXLOWERBOUNDFORTHECOVARIANCE_IETRIX

OFA VECTORESTIMATE

A matrix bound similar to the Cramer-Raolower bound [i], [Z], [3],

for the covariance matrices of vector estimates can be formulated in a

matrix notation which facilitates in the search for vector estimates

with minimal covariance matrices. (Werecall that one positive definite

covariance matrix is by definition less than or equal to another

provided the second minus the first is non-negative definite.) The

derivation presented here is similar to that of Cramer's [4] in which

he establishes the efficiency of vector estimates using the concept of

ellipsoids of concentration.

A matrix lower bound for the covariance matrices of unbiased

vector estimates of the unknownparameters in the linear regression

model with correlated normal error is established. A direct result of

this application is that the best linear estimate given by Gauss-Markov

Theorem [5] still yields the minimum covariance matrix when compared

with other vector estimates from the larger class composed of linear

and non-linear vector estimates. This result has been noted [6] for

the case of uncorrelated normal errors. When the variance is known,

the result obtained here is similar to that given in [i] for estimates

of various scalar functions of the parameters.

5.i The Matrix Lower Bound

Let the joint density function of n random variables

Y = [YI' "'" y]T be
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(5.I) L(Yl Yn" 81 8p)

where 8 = [81 , ..., 8p] T

estimate. The symbol AT

are unknown parameters which we wish to

denotes transpose of A; and the symbol E

denotes the expectation operator. An arbitrary n X m matrix A will

m

at times be denoted by {aij}n, while the null matrix and the identity

matrix will be denoted by ¢ and I, respectively.

By definition of joint density function, it follows that

OO

(5.2) i : t... ; L dYl...dy n

It is assumed that the following regularity conditions hold:

CO OO OO

_L
[ f... f L dYl...dYn] = f... I _T. dYl'"dYn

(i) _8i -- -co -_ -_ z

i = I, 2, ..., p.

_L

(ii) _ [_.I...__I TiL dYl...dy n] = -.l'"-col T i _T.j dYl""dYn

i. : i, 2, ..., p.
]

where T : [TI, T2, ..., %]T is a vector function of the elements of

Y. The vector T is an unbiased vector estimate for 8.

On differentiating both sides of (5.2) with respect to 8i and by

condition (i) one obtains

(5.3)

_L
/... / _T. dYl...dYn

o: I... z T.dYl...%
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(5.4) [_ In L.] i --I, Z, ..., p.
0 = EL 8B_i

Let the p X i vector S

(5.5) S = {_ in L 1
Si }p

of random variables be defined by

with mean vector by (5.4)

(5.6)

a pXp

(s.7)

E(s)--

covariance matrix E(SST) = A, that is

In L 8 In L] p

a positive definite matrix.

Let T be an unbiased vector estimate of B, then

0O OO

(5.8) Bi = I... J"TiL dYl...dY n
--00 --GO

i = I, 2, ..., n.

On differentiating with respect to

if condition (ii) holds that

Sj both sides of (5.8), it follows

_ _L

(5.9) 6ij : I... I T i _. dYl--.dY n :
--OO --OD J

OO (_

InL

f"" f Ti _Bj
--CO -OO

L dYl...dy n

= E[TiS j]

where _ij = I, if i = j and _ij = 0, if i ¢ j.

Let the covariance matrix of T be z, that is

(5.10) Z : E[(T-B)(T-B) T]
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a positive definite matrix.

Consider the 2p X 1 vector v which is built by adjoining the

vectors T and S,

(5.II) v= (TT ! sT) T

The covariance matrix R of v
V

and is

follows from (5.7), (5.9) and (5.10)

zI
(5.12) Rv = [I A]

since E(TS T) = I is the covariancematrix of the vectors T and S.

We note that Rv is positive definite, which implies Rv 1 is positive

definite. Let Rv -I be partitioned compatibly with (5.11), that is

V
"21 "'22

where each submatrix A..
ij

principal submatrix [5]

are p X p matrices.

A{_ = £-I A=I I = £ - A-1

is also positive definite, hence we conclude that

The inverse of the

-i
(5.13) r. > A

the desired matrix lower bound.

5.2 An Application

Let the n X 1 observation vector Y be related to the

vector of parameters according to the linear model

pXl
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(5.14) Y = X 8 + e

where X is a known n Xp mapping matrix and e is a n X 1 normal

random vector, whose mean vector is E(e) = ), and known n X n covariance

matrix

E(ee T) = R

The probability density function of the observation vector Y is

(5.15) L= 1
(2_)nr2'/[ R II'2/ exp {-IT[(Y-X 8)T R -I (Y-X 8)]}

We note from (5.14) that

(5.16)

(5.17)

E(Y) = X B

E(YY T) = R + X BBTxT.

and from (5.15) that

InL

(5.18) _
- XT R-I Y- XT R-I X 8

It follows that (5.7) and (5.18) that

(5.19) A = E[CX T R-I Y - XT R-I X 8)(XT R-I Y - XT R-I X 8)T]

On expanding the right side of (5.19) and substituting (5.16) and (5.17),

the inverse of the matrix bound is found to be

(5.20) (XT R.1 X)
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The desired bound is by (5.13)

(xT R-I x)-Z

which is clearly the covariance matrix of the vector estimate given by

the Gauss-Markov Theorem, that is

= (xT R-1x)-ixT R-Iy.

It is immediate that the minimum variance unbiased vector estimate

for CT B, where C is a vector of constants, is simply CT B.



76

5.3 References

[I] Kendall, M. G. and Stuart, S., Th__eAdvanced Thegry of Statistics,

Vol. 2, Griffin and Co. (1961, pp. 9-19.

[2] Hogg, H. V. and Craig, A. T., Introduction t___oMathematical Statistics,

2nd ed., Macmillan Co., (1965), pp. 237-242.

[3] Lehman, E. L., Notes on the _eory of Estimation, University of

California Press, (1962), pp. 2.3-2.19.

[4] Cramer, H., "A Contribution to the Theory of Statistical Estimation,"

Skand. Akwarietidskrift, Vol. 29 (1946), p. 85.

[5] Graybill, F. A., An Introduction to Linear Statistical Models, Vol. I,

McGraw-Hill (1961), pp. 8 and 114-117.

[6] Anderson, T. W., "Least Square and Best Unbiased Estimates,"

Annals of Math. Stat_, Vol. 33, No. i, March 1962, p. 272.



7?

Chapter VI

BEST LINEAR UNBIASED ESTIMATION BY RECURSIVE METHODS

WHEN THE OBSERVATIONS ARE CORRELATED

In this chapter a set of recursive formulas will be developed for

obtaining the (B.L.U.) estimator for a large class of error correlation

models as described in equation (6.4). The advantage of these formulas

is that the storage and computational requirements are greatly reduced

over the classical solution when the amount of data is much larger than

the parameter C. For the case of stationary errors the recursive

formulas are only slightly more complicated to implement than the least

squares solution for moderate values of C. Thus by using the formulas

developed in this chapter, B.L.U. estimators can be used in practice in

the later case without undue computational penalties.
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6.1 Correlation bbdel

Let Y be an n X 1 observation vector such that the i th element

Yi of Y is an observed scalar at ti, i = 1,2,...,n. Let

(6.1) Y = HX + V

where H is an n Xh known matrix, X is an h X 1 vector of

parameters, and V is an n X 1 error vector such that

(6.z)
EV= ¢

E(W T) = o = (o(i,j)) and o(i,j) = E(vi'v4)'a

vi, vj are the ith and jth elements of V. We note that v i is

not necessarily a stationary process nor are the observations necessarily

equally spaced. However, whatever the set of spacing t 1 = (tl,t2,...,t n)

of the observations are, the corresponding matrixes H and 0 must

be known. The indicated notations of equations merely maps ti + i

for convergence of notation.

The problem is to obtain a Best Linear Unbiased Estimate (Markov

^

Estimate) of X, denoted by X. By definition p is a real and

symmetric and it will be assumed positive definite. The solution for

is well-known [1 ] and is given by

(6.3) X = (HTo-IH) -IHTo-IY.

Although the Markov estimate is an optimum estimator, its application

-1

in practice is severely limited by the requirements of obtaining p

for large n.
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In the material to follow recursive solutions for X will be

considered. These recursive solutions will considerably reduce the

computation and storage requirements as compared to a non-recursive

solution.

In the present discussion the correlation matrix is restricted

to one of the following cases:

(6.4) a: p(i,j) = 0 whenever li-Jl __ C

b: p(i,j) satisfies a linear difference equation

of order C with variable coefficients.

For 6.4a it will be assumed that the covariance matrix p is known.

For 6.4b one may assume that the coefficients of the difference

equation are known and derive the p(i,j) satisfying the difference

equation or one may be given p and derive the coefficients.

The general solution will be presented for the non-stationary

process. However if vi is stationary then the solutions obtained

are greatly simplified. The solution for 6.4a will be presented first.

It will be shown that the computational difficulties increase

quadratically with C for case 6.4a. Thus if condition 6.4a is not

met by the actual covariance function, one can take successively

larger values of C to obtain a better representation of the process

(vi). One then must weigh the gain in statistical accuracy against the

increase in computational complexity.



8O

6.2 The Solution

-i
Since 0 is positive definite, then so is 0

-I
p can be uniquely decomposed into

-i = S-I -I(6.5) o = sTs, 0 (ST)

whe re

Substituting (6.5) into (6.3) we obtain

(6.6) X = (HTsTsH) -I HTsTsy

Letting

. Thus and

S is a lower triangle matrix with positive diagonal elements.

(6.7) HTs T = BT

SY= Z)

then (6.6) becomes

(6.8) X = (BTB)-I _Tz.

Equation (6.8) is known as the least squares estimate of

to the transformed observational vector Z.

under the transformation 6.7

(6.9) Z = BX + m,

where _ = SV.

corresponding

Thus equation (6.1) becomes

The covariance of m is given by

E(mmT) = E(svvTsT) = S0ST

= (S S-z)(sr'ZsT)
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or

(6.10) E(m,5) : I.

Under the transformation 6.7 the problem has been reduced to

determining the transformation S from a given covariance matrix 0

and manipulating the equations to minimize the storage requirements

of components of S, H, and Y.

6.3 Determination of the Transformation S

One may determine the matrix S satisfying 6.5 in the following

way. Consider

Let S-I = AX, where A is lower triangle and X diagonal, which implies

(6.11) V = Ar_,

where EV = ¢, Em = 0, E(VV T) = p = (0(i,j)), and E(mm T) -- I.

Equation 6.11 can be written as

(6.12)

m

vm = _=lamjOjmj,
m = 1,2,...,n.

Let A.. = I, j = 1,2,...,n. Thus it follows
JJ

m-i

E(v 2) = 0(m,m) = _ A2.o 2 + o 2
j=l m3 J m

which implies

(6.13)
m-i 2

= 0(m,m) - A_,,,jojz,%
:1

m = 1,2,...,n.
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Now if one considers

m

E(VmVl) = E[(_=I amj°JmJ) (allOlml) ]

2
= amlallO 1 = amlP(l,l)

then

(6.14) Aml : _ ' m : 1,2,...,n.

Also

m i

B(vmvi) : E[(_:I Amj°JmJ)(t:l Ait°tmt)]

which implies

p(m,i) = AmlAila_ + ... + AmiAiia _

i-i

(m,i)- Z AmjAija _

(6.15) A m j:l• m > i, L = 1,...,m.

1

Thus the above formulas allows one to calculate the coefficient A .
ml

recursively given p(i,j). If (6.4a) holds a simplification of the

above formula results. Assume (6.4a) holds, then

m-i>C

implies from the above formulas that Ami = 0. For suppose t is such

that m - t > C and m - t
m 1 < C, then formula (6.14) implies Aml : 0

if m - 1 >C and from formula (6.15) Ami = 0 if m - i >C. Hence

A • = 0 when m - i > C. Thus (6.12) becomes
ml



83

m

(6.16) vm = _ Amjojm j , m = 1,2,3,...,

j--max(l,l+m-C)

and if n - m> C, then m < 1 + m - C implies

m

E(vn,Vm) = E[([ AnjOj_j)

j=max (i,l+n-C)

m

m=max (I ,l+m-C)

(6.17) = O.

Thus A is a lower triangle matrix with at most C, non-zero diagonals,

i.e.

(6.18) Amj = 0, (m-j) > C

(m-j) < O.

6.4 Computation of the mth Row of A

Let m > i, i = m, m - I, m - 2, ..., m - C + I; m : 2,3,

Then by applying (6.18) to (6.15) we obtain

(6.19) A . :
/ILl.

_(m,i)

i-i
2

AmjAij° j

j--max(l ,m-C+l
2

(3.
1

Since Ami = 0 when m - i >__C then the computation of the mth row,

A(m), of A requires the storage of at most the last C rows of A that

is A(m ), A(m.l ), ..., A(m.C+I), and the sequence

{oj2}, j : m, m - i, m - a, ..., m - C + I.
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Since each row A(u), u > C, contains (C-l) non-zero coefficients
m

Aui , i.e. Auu ) Au,u_ I, ..., Au,u_C+ 1 are possibly different from zero

but Au,u_C, Au,u_C_l, ..., Au, 1 are all zero, then the storage is of

the order of (C-I) 2.

6.5 Computation of (dj2)

Equation (6.13) becomes

m
2 2 2

(6.20) om = 0(m,m) - [ AmjOj

j=max (i,m-C+l)

Now is i = m - C ÷ 1 in (6.19) then we must require the storage of

{Ou2}, u = m - 2C + 2, m - 2C + I, ..., m - C + I. Thusthe sequence

one sees that the storage requirements for the mth row of the matrix A

increases as C2 and is not a function of m. Hence for large m this

represents a substantial storage savings. These properties follows as

a consequence of property (6.4a).

6.6 Inversion of A Matrix

The discussion so far has considered recursive methods of evaluating

the elements Ami of A. However from the equation _ = SV one sees

that the desired transformation S is in terms of A -I. Therefore we

will now consider properties of the elements bkr of A -I.

Let

B = A-I = {bkr}
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Since
A : {Aij } is a lower triangle matrix it follows that

{a) A-I is lower triangle matrix

(b) Ajj = 1 implies bkk = I,

and finally let k > r then

{6.21)
k-i r = 1,2,...,k-I

bkr = - _. bjrAkj
3=r k = 2,3,...,n .

To see formula {6.21) multiply the kth row of A times the rth

column of B. Thus we get

or

Akr b + Ak Ib + + Aklrr r+ r+l,r "'"

b-i

bkr = _:r bjrAkj"

k-l,br-l,r + Akkb, ,r
=0

{6.22) bkk = i, k = 1,2,...,n

{6.23) bkr : 0, k < r.

Using formula (6.18), we note that formula {6.21) becomes

k-i

(6.24) bkr = "_=k-C+ i bj rAkj'

Equation {6.24) leads to a very useful relationship between the

observed sequence {yl } and the transformed sequence Z = SY.

one has Z = E-IA-Iy which implies

Thus
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(6.25)

(6.26)

Zk_l k
ak _r=ibkrYr'

k = 1,2,...,n.

k-i

Substituting (6.24) into (6.26) one obtains

k-i k-i
1

(6.27) Zk = 7kk[Yk - [ [r=lbjrAkjYr ]
j=k-C+l

Fix j = k-l, k-2, ..., k-C+l andnoting (6.25) for k > C, then

k-I k-I
1

Zk = 7k[Yk - _r=lbk-l'rAk'k-lyr - [r=Ibk-2'rAk'k-2yr - "'"

k-i

_r=ibk-C+1 ,rAk,k-c+lYr ]

--i

7k'k[Yk- Ak,k-l°k-lZk-1 - Ak,k_lak_2Zk_2

- Ak,k_C+lak_c+iZk_c+ I]

C-I

(6.28) _ 1
ok [Yk - ___iAk,k-u°k-uZk-u]

For kiC, take yv = 0 if v < 0.

Equation (6.28) shows that to generate the kth transformed variable Zk

one requires storage of the previous C values of Z and the

coefficients of the kth row of A as well as the present and C previous

values of ok . Thus as n gets very large and one wishes to compute

Zn+l, the transformed data need be stored over a span of C observations
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rather than n, since Zn satisfies a linear difference equation with

non-constant coefficients given by (6.28).

6.7 Recursive Relationships for the Parameter Estimates

Let _(n) be the Markov estimate based on an nth dimensional

observational vector, and define H(n) correspondingly. Let us assume

that an estimate _(n) has been obtained and that m additional

observations have been made, and it is desired to obtain a Markov

estimate of XT based on the (m+m) observations recursively in terms

of _(n).

The first n2 terms 0(i,j), i,j = 1,2,...,n of the covariance

matrix do not change as 0 goes from an n X n to an (n+m x (n+m)

matrix. Similarly the first n rows of matrix H of equation (6.1)

are unaltered by the addition of m rows to H. Thus the first n rows

of matrices A and A -I and r are also unaltered as these matrices

change from n X n to (n+m) X (n+m) matrices by the addition of m

more observations. The net effect is that the first n rows of the Z

vector and the first n rows of the 8 matrix are unaltered. Thus

let B(u) be the 8 matrix based on the first u observations and

similarly for z(U). We may write (6.6) as

(6.29) _(m+n) = (8(m+n)T 8(m+n))-I 8(m+n)T Z.

We may partition matrices 8 and Z as follows,
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(6.30) BCm+n)T= [8(n)T ! _BT]

hXn hXm

(6.31) Z(m+n) =

Thus (6.29) becomes

(6.32)

(6.33)

nXl

z?)
mXl

_(m+n) = [8(n)Ts(n) , _sT_8]-I[B(n)Tz(n ) + _8T6z]

= (I + A)-l(8(n)T_(n)) -I [8(n)Tz (n) + _8T6z].

_(m+n) = (I + A)-I[x (n) + (8(n)rs(n))-168T_z]

where

(6.34) = (B (n)TB (n))-I_tsT_B.

We note that a

values greater than or equal zero. Let

of a. Then [15] if X < 1, (I + A) -1

form

is at least positive semi-definite and has eigen

x be the maximum eigen value

permits an expansion of the

(6.35) (I + A) -1 = I - t, + _2 _ A3 + ....
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If X << I, then

(6.36) (I + A) -I -"I - A.

In many applications if n >> m, (8(re)T8(n)) is ill conditioned and

therefore (6.35) is a very useful approximation for obtaining

(6.57) (8(n+m)Ts(n+m))-I = (I - A) (8(n)T, 8(n))-l,

and for direct substitution into (6.33).

6.8 Recursive Relationshi P for Elements of 68

From (6.7) and S-I = AS we may write

(6.37) 8 = SH = r-IA-IH = (Su,v).

The elements 8uv of 8 are given by

i u

(6.38) Buy = aq _=ibujhjv

u-I
(6.39) _ I

au.[huv + [ b .h..].j:l uj Jv

Substituting (6.24) into (6.38) we obtain

u-i u-i
I

8uv : _u[huv + _ Aui _ bijhjv]"
i:u-C+l j=l

Fix i : u-l, u-2, ..., u-C+l and noting (6.38) for u > C, then
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1

Buy = 7[huv - Au,u-l°u-lbu-l' v- Au,u-2°u-2bu-2' v
U

(6.40)

- ... Au, u_c+lou_c+Ibu_C+l ]

C-i

= o_[huv-_=1 Au,u-jSu-j,v°u-j ]"

That is for each column of 8, the elements in the vth column satisfy

the same difference equation as do the Z variables of (6.28). To

obtain the elements of 68 we note

_B = (Su,v)

It is therefore only necessary to store additionally the

rows of the matrix 8(n) .

C previous

6.9 Stationary Case

Let us asst_ae that condition (6.4a) holds and in addition

pCi,j) = p(li,j[).

Then from (6.19) with m > i > C

i-i

AmiOi 2 2= p(m,i) - [ AmjAijo j

j---m-C+l

which implies

(6.41)

i
2

p(m,i) = [ AmjAijo j

j =m-C+l

= p (m-i)
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(6.42)

i+l
2

o(m+l,i+l) = p(m,i) = _ Am+ l,jAi+ l,joj .

j--m-C+2

Equating (6.41) and (6.42) we obtain that m sufficient condition for

(6.41) and (6.42) to be satisfied in that

(6.45) AmjO j = Am+l,j+lOj+ 1.

Formula (6.43) follows by letting t = j-i in formula (6.42). Since

formula (6.43) holds for j = m, then

(6.44) :0 :_,j>m>C
oj j+l -- -

Amj = Am+l,j+ 1

Thus each diagonal of matrix

The elements of _S and 68

j = m,m-l, ..., m C+I"

A has constant value from the

are easily obtained as follows.

Cth row.

Let

(6.45)
Auv: Auv,u C,v=u,u-l,...,u-C+l"

Then from (6.28)

(6.4S)
C-I

I

Zk : 7[yk - [u:iAk,k.u °Zk-u]

Yk C-I
: - _ Z k 2C

7 u:iAk >,k-u k-u '

and from (6.40)

(6.46)
h C-i

uv [ Au,ujBu_j,vu, 2c"
o j:l ' -
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The computations of 6Z, 6B, 6, and X (n+n) proceeds similiar to the

above. 6.8 p(i,j) satisfied a difference equation.

6.10 p(i,j) Satisfied a Difference Equation

We will now develop recursive estimates of _(n+m) based on

condition (6.4b): First the general case of non-stationary (vi) will

be considered. The simplification of the solution when (vi) is

stationary will be shown. An approximate solution will be demonstrated

for a class of processes which are asymptotically stationary. Finally

the nature of the covariance matrix will be discussed when the time

varying coefficients of the difference equations are taken as constant

(model of reference 12). The approach will be to obtain a partitioning

-I -I T
of p into a lower triangular matrix _ such that p = a a. The

procedure then for obtaining _(n+m) will be as previously shown. The

problem will be considered from two points of view. In the first case

it is assumed that the coefficients of the difference equation are given

and it is required to generate the elements of p. in the second case

it will be assumed that one is given the elements of p and is required

to generate a. In the latter case it will be required to insert matrices

of order min (u,c) for row u of _. However, when

or the diagonals of _ are constant then all rows Of a

u _ c and only the inversion of one matrix of order c

obtain all rows of s for u > c.

Let the random sequence

U

(6.47) _u = Z _juVj

{vi} satisfy

u = 1,2,... ,n

j=max (I ,u-C+l

(vi) is stationary

are equal for

is required to
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with auu > 0 for each au and auj real.

That is a = (aij) is a lower triangle matrix (zeros above the main

diagonal) with at most C ncm zero diagonals. Thus (6.47) can be

written as

(6.48) _ = av.

Now it follows that E(_) = ¢ and E(_ T) = I. Hence we can write

(6.49) E (2) u-- [ a ._ o(j,k)

It follows that

-I
(6.50) V-- a _.

Multiplying each side of (6.47) by Vk, u >_k then using

= i dji_ i where {%i} = _-I
vj i=l

one finds

U

ECVk%)= Z dujo (J,k)-
j=max(l ,u-c+l)

But

k k

E(Vk'_u) = E(!=Idki_i_u) = i=l[_i6iu

= dkk_ku

which implies

(6.51)

U

d u = _ auj p(j,u)

j =max (1 ,u-c+l)
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Thus we note (6.51) shows that the covariance function 0 (j,u) satisfies

a difference equation with time varying coefficients auj and forcing

function duu. To evaluate duu note that

(6.52) E(W T) = 0 = a-l(a'l) T

or

u

(6.53) Z Ctuj djv -= 6UV , V<U.

j=max(v,u-c+l)

Letting u : v then

(6.54) _wdw = 1

which implies

-I

(6.55) _ = %v"

Similarly for u = 1,2,3,..., k = 1,2,...,u-I

(6.56)

U

_: aujdj,j, k = 0

j=max(u-k,u-c+i)

or

(6.57)

u-1

du,uk---% [ _ujdj,u-k •
j=max(u-k,u-c+l)
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6. Ii Generation of Covariance Matrix Given a.

Given the coefficients auj of a one can generate the elements

of p as follows. Since

U

dkk_ku= _ %i p(j,k)
j--max(l ,u-c+l)

then for k = 1

u-I

1__ = _ (j,l) + (u,1)
all lu aujP auuP

j=max (i ,u-c+l)

or

(6.s8)
u-I 61u

- I _ aujp(j,l) + -- .
p (u,l) auu j:max(l,u-c+l) all

Therefore

1
(6.59) p(l,1) - 2 "

al I

One may then compute p(l,u), u = 2,3,...,n recursively from (6.58).

Also the u = k

(6.60)

k

I--!--: _akjP (j,k)
akk

j=max (1,k-c+1)

For k=2

(6.61) 0(2,2) : a22 (-a21 a )
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Since 0(2,1) is obtained from (6.58), we may solve for 0(2,2).

may now generate for u = 3,4, ....

u-1

(6.62) p(2,u) = i ! aujp(2,j) .
_22 j=maxCl,u_c+l)

We

By a similar procedure we may solve for each p(u,u) from (6.60) and

obtain

(6.63) p (v,u) -

u-I

1 Z (ZujP(j,V) '
_uu .

j=max(l ,u-c+l)

u = v+l ,v+2,... ,n.

6.12 Generation of _ Given the Covariance Matrix p

The problem of more practical importance is the generation of the

matrix _ from a given p. In general given a positive definite

-I
covariance matrix 0, the inverse p is also positive definite and

-i
there exists a unique decomposition of 0 as given by

-i T
(6.64) p = o_(_

into the product of a triangular matrix and its transpose, where

has positive diagonal elements. This requires in general that the

sumnation of (6.47) be from j = 1 to u. The effect of the trans-

formation (6.47) is to require that _ij = 0 whenever (i-j) _ c,

so that the difference equation which is satisfied by p(i,j) is of

maximum order C. If this condition is not actually met then (6.4b)

can be considered as a Cth order approximation to the true difference

equation whose order may grow indefinitely large with n. This

approximation would seemreasonable to use in those cases where the
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magnitude of the difference equation coefficients aij drops rapidly

as i-j = (c,c+l,...) whereas the correlation coefficients p(i,j)

may not decrease rapidly as li-jl = (c,c+l,...). If on the other hand

p(i,j) ÷ 0 rapidly as li-jl = (c,c+l,...) then the methods based on

assumption (6.4a) would be more useful.

6.13 Computation of auj, u 2 C

Given the p(u,m) one can obtain the a.. as follows: From
Ij

U

(6.65) E(Vk,,u) = dkk6ku = [ aujp(j,k )

j=max (i,u-c+l)

we may write for k = i, u = i

-i
all = allO(l,l )

or

all = p (I,i)-I/2.

Letting k = I, u = 2

2

0 = [ a2jp(j,l )
j=l

or

a21P(l,l) + a22P(2,1) = O.

Letting k = 2, u = 2, then

2

_2 = =laZj p (j'2)
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or

c_21 (1,23 + a22o(2,2) = -1_22"

Now by multiplying through by a22 one obtains the system

2 (2,1) 0(6.66) a21a22P (1,1)+ a22 p =

2 (2,2) 1.a21a220 (1,2)+ _22 o =

Let

(6.67) 8ij = aijaii, then

(6.68)

p(1,1) 0(2,1)] IB21

0(1,2) 0(2,2) [822

Let 0(2) = [o(1,1)

[o(1,23

_ -o (2,1)
(6.69) B21 det o (23

o(2,1)]

o(2,23J
, then

_ p(1,1) 2

822 det o (2) = a22

where det A is the deteminant of A.
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The construction continues for B_.= (831,832,833)

(6.70) 83. = p

up to

(3)-i I!

ST. where each of the matrices p (u) is given by

(u) =(6.71) p (p(i,j)), i,j = 1,2,...,u, for u <_C.

Therefore

(6.72) Bu. = p

Let R.(u.)
z]

(u) -1

be the cofactor of the element p(j,j) of p(U). Then

(6.73) 6uj =
Ru{ )

det p
(u) ,

and since

2
8UU = aUU )

we may determine

(6.74) auu " = Butt

and then auj , j=l,2,...,u-1 from (6.67).
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6.14 Computation of _vj' v >_ C

Define

(6.7S) p(V) = (p(i,j)), i,j = V-C+l, V-C+2, ..., V.

When v • c, (6.65) may be written

1 V

_kv = _ 7 avjP(j,k)

j=v-c+i

V

= [ avvavjO(J, k)

j=wc+I

(6.76)
V

akv = [ 8vj_(j,k), v >_k.

j=v-c+l

Let k = v

V

1 = X Svj_(j,v),
j:v-c+l

k=v-i

V

0 = [ 8vjo(j,v-1),

j=v-c+l

k = v-c+l

V

0 = 7.. BvjP(j,v-c+I)

j=v-c+l
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or

0

0

1

p(v-c+l,v-c+l) ...

p(v-c+l,v) . . . p(v,v)

p (v,v-c+l)"
.

8v,v-c+l

Bw

cxl cxc cxl

which implies

(6.77) 8v. = p
(v) -i

1

where p(v) is a c x c matrix whose matrix inverse exists since p

is positive definite. The components 8vj, may now be obtained by

using equation (6.73) and (6.74) which hold for u >__C. Thus we see

that to obtain the uth row of a for u > C it is necessary to invert

a c x c matrix, if C is very large this will make the recursive

solution of doubtful value. It will be seen however that the method

simplifies considerably if (vi) is stationary.

6. i_ Stationary (vi)

Let us asstme that the sequence (vi) is a stationary so that

(6.78) p(i,j) = p(li-jl).
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Then

p(V) : P(v+I) v - c, c+1,
9 o_e

and therefore

(6.79) Bv. = Bv+ I,

and ev,j = _v+l,j+l' j = v,v-l, ....

Note that avj is not necessarily equal to _v+l,j+l if v < C.

Thus in the stationary case all the diagonal terms are constant

for all rows equal or greater than the Cth row. It is now only

necessary to invert the matrix p(c) to obtain all subsequent values

of auj' u >_C. This property is very useful and can be helpful in

obtaining a recursive relationship for the _uj for process which

though not strictly stationary, approach a stationary condition

asymptotically.

6.16 Recursive Parameter Estimates

It is desired to obtain recursive estimates of the Markov estimator

^

X. The method is the same as previously shown with slight modifications.

Let

(6.80) c = cd-I

(6.81) Z = _y.
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-I T
Then from p = _ _ and (6.3)

(6.82) = (¢Tc)-1 JZ.

Again the first n rows of the Z vector are unaltered and the first

n rows of the s matrix are unaltered as one goes from n to n + m

observations. Thus equation (6.50) and (6.57) hold with the substi-

tutions B to s and Z to Z and A to 6. It now remains to

determine the elements of 6s and _Z and show that they require

storage of at most the last C rows of H (n) and y(n). Let

(6.85) ¢ = (¢ij)

then

n+m i = 1,2,...,n+m

= j = 1,2,...

But

ai, t = 0 if 0 < i-t <_C.

Therefore

(6.8s)
i

¢ij : _ _itHt,j

t=max (i,i-c+l)

and

6

(6.86) 6c = (¢ij)

i = n+ i,... ,n+m

j = 1,2,...,h.
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Let n > C then

(6.87) = Z  itHt,j
t=i-c+l

Therefore to compute the elements of 6¢ one must store the last C

rows of H (n).

Similarly for i >_ C

i

(6.88) Zi : _ airy t i = c,c+l,...

t=i-c+l

requires the storage of at most the last C values of Yn" When

(vi) is stationary then one may substitute _i,t = _i-t,i=c,c+l,...

in equation (6.87) and (6.88).
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Chapter VII

ONSELECTINGSAMPLEPOINTS

Given the linear model Y -- X8 + e where

y

Yl

Y2

Yn

X

1 x1

1 x2

Q •

: •

1 x
n

and

e= e1

L°,

with Be =

and Case I :

Case II:

Eee t = Ic2

Eee t = Va2

We wish to look at a procedure to choose the xi's, i = I, ..., n,

^ tv-iX -ic2so that the cov(8) = (X ) is a minimum.

If we allow the xi to be chosen from an unlimited range, then

we can make the coy(8) arbitrarily small by choosing the X matrix

to be aX, so that

coy(8) = a-I(xtv-1x)-lc 2 which approaches 0 as a ÷-.

Thus we will limit the range of the x.
1

may be interested•

to small regions in whichwe
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Then we can make a restriction of the form:

(7.1) xtv-Ixi = C'21(given), i = 1,2.

where Xi is the ith column of X.

^

THEOREM 7.1 Let X be a design matrix and the 8i be the least

squares estimator of 8i. Then, under the restrictions in (I) on

(b) the minimum is attained when

Proof: Let i = I. The matrix

T -1
XIV X1

(7.2) xTv- 1X =

(Xi"V-Ixj)_= 0, i _ j.

XTV-1X can be written as follows

T -i
XIV X2

MID

X_V-IxI X_V-Ix2

where X = (XI, X2).

Since xTv-Ix is positive definite, then

(xTv-lx)-1

where

T -i -I T -I -I
(XIV XI) (XIV X2)]
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Therefore

^ 2
Coy(8) =

Hence

(7.3)

1 1
m

> (XIV-IxI) C1T

Since [(C-Ix1) -(¢-Ix2) (x2Tv-Ix2)-i (@-Ix1) ] > 0

and (X_V-1X2) cxTv-Ix2)-lcxTv-1x1) > O.

To show V(82) I
C22 is shown similarly. The equality in (7.3) is

satisfied whenever xTv-Ix2 = 0.

COROLLARY 7.I.1 For the special case of Theorem 7.1 where V = I,

we have the condition xtxi = Ci2, and the optimum choice of combinations

(rows of X) is when xtxj = 0, that is, the coltmms of X are orthogonal.

The proof follows from Theorem 7.i.
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THEOREM7.2

o21, show that the choice of the xi, restricting theV

< xi --<l, which will give the minimum value for coy(8)--I

choices of x. = -1 and n/2 choices of x. = +l.
1 1

Given the linear model described above (Case I) where

xi to

is n/2

Proof:

xtx =

n rxi 1Zxi rxi2

(7.4) (xtx)-I_ 2 : cov(8) :
o2Zxi 2 -o2Zx i

nr (xi - _ 2 nZ (xi x-_2

-o 2 xi +o2n

nY.Cx i - x-] 2 nZ (xi - X-)2

If we denote the colunms of X by XI and X2, and recall from

Corollary 7.I.i that XI and X2 need to be orthogonal in order to

obtain the minimum variance, we see that the terms off the diagonal in

(7.4) must be zero. In order to make these terms zero, we must set

Zxi = O. In order to minimize Var(_l) , note that if Exi_= O, then

2

Var(;1 ) : o--_, which does not depend on the values of the x i. Finally,

2
t 0

Since Var(B2) : _ if Ex_. O, we see that the Sx4_ should be
X.

1

chosen so as to make
2

X.
1

as large as possible.

One method of forcing the xi

xi+ I = -xi for i = 1,3,...,n-l.

to sum to zero is to choose

If the sum of the
2

X.
1

is to be as
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large as possible, and if -i =<xi --<+i, the n we need to choose n/2
2

of the xi = i and n/2 of the xi = -i. This implies that vat(82 ) _ On.

We can reach the same conclusion in another manner. Consider the following

example where n = 4.

>

Choose xI = i/a I where a = 1

x2 = -x1

x3 = I/a 2

x4 = -x3

Then

1 i/a 1

1 -I/a1

1 I/a 2

1 -I/a2

2(I/alz + l/a22

o2(xtx) - 1

To minimize the

02
-- 0

4

V(B2) , the tern

2 (a12)(a22)
, )

_'fCCal2)+Ca2 2)

2 2
a 1 a 2

2 2
a 1 + a 2

needs to be made as small

as possible. This can be accomplished only if a1 = a 2 = 1. As a

result, the matrix X becomes
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x.li:il
whenever V is given. Let

follows

^ ,2(xT o2Cov(B) = RX)-I =

We now develop a technique for choosing the design matrix X

V -1 = R = (rij). Then write Coy(8)

r_ryXiX j - .X X. Xirij
ij x3

_.__ Xiri j z r.rij
ij

(r,Erij) (r.r.rijXiXj) - (r.r.Xirij)

as

By Theorem 2, we need to choose the off diagonal elements to be zero to

insure V(B 1) and V{B 2)

which implies xITRX2 = 0

X2 = (Xl, X2, ..., Xn )T.

vector X2 such that xTIRX2 = 0 and V(_ I)

The above covariance matrix becomes

to be a minim_u. Therefore x _ rijX i = 0

since XI = (I,I,...,I) T and

The problem has now reduced to finding a

and V(8 2) are minimum.

^

Cov(S)-

2

Z_rij

2

Thus to minimize V(_ 2)

possible and XTRX2 = 0.

choose X2 such that xTRx2 is as large as
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Chapter VII I

ONLINEARESTIMATIONWITHLINEARCONSTRAINTS

In this chapter we will develop the best linear estimates of x

in the linear model

(8.1) y = Hx + v

under a set of linear constraints.

We will consider the constraint

Ax=T

where A is an m x n known matrix such that

r(A) = m < n

and T is a known m x I vector of constants.

Also we will consider estimating x in (4.1) if the added

information that

r=Sx+u

is known where r is t x 1 vector, S is a t x n known matrix and

u is t x 1 error vector such that

E(u) --

and

e(uu T) = A.

A is positive definite. No restriction on the rank of S is required.



115

8.1 Deterministic Constraints

Suppose that in addition to the linear model (8.11 it is known

that

(8.2) Ax = T

where A is m x n known matrix such that the rank of A

r(A) =m <n

and T is a known m x I vector of constants. Our purpose is to

develop a best estimator for x.

THEOREM 8.1 The minimt_n variance unbiased estimator for

¢

given (8.21 is 7_i:_ _t .....

x=x+_'̂ (hTR-lh) -1 AT[A(hTR-lh)-IAT]-I(T - Ax)

x in (8.1)

where

x̂ = (hTR-lh) -I hTR-ly

Proof: It is true that the "pay-off' function

Q = (y - HxITR-I (y _ Hx)

yields the minimum variance estimate for x, that is

= -2HTR-1Cy-mO =
8x

implies that

^

x = cHTR-1H1IHTRly.
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Consider the payoff function

Q' = (y - Hx)TR-I(z - Hx) + 2xT(T - Ax)

where

(8.3/

X is a m x 1 vector of Lagrangian multipliers. Then

!

_Q---2HTR'I(y- Kxl - 2ATx -=
8x

!

L.o_.= W _ _ -- _
_X

!

gives a necessary condition for Q to be a minimum.

ATx = (HTR-IHJx - HTR-Iy,

This implies

which implies that the estimate

(HTR -1H) _ = HRR- 1y + ATx

or

^ (HTR1H1AA(8.41 X = X + ) •

If

(8.5) X = [A(HTR-Ih)-IAT]-I(T- /_),

then (8.41 and (8.5) form a minimum variance solution to the system of

equations in (8.3). It is important to note that

^

W - A_ = W - A[x + (HTR-1H)-IATx]

= T - Ax - A(HTR-1H)ATx

--T-Ax- (T-/_1

=_,
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as was required.

Also one notes that

E_=Ex+ ^ (HTR-IH) -1E_,.

But

Ex = x

and

El = [A(HTR-Ih)-IAT] -I (T - AEx)

= [A(HTR-Ih)-IAT] -I (T Ax)

by (8.2).

The covariance matrix C(_) is obtained as follows:

C(_) = C{x + (hTR-lh) -1 AT[A(hTR-lh)-IAT] -1 (T - Ax)}

= C{(I - (hTR-Zh) -1 AT[A(hTR-Ih)-IAT]'IA)x}

= B(hTR-Ih) -IBT

where

B = (I - (hTR-Ih)'IAT[A(hTR-Ih)-IAT]-IA.

On reducing C(x) to a simple form we find that

C(_) : (hTR'lh) -I - (hTR-lh)-IAT [A(hTR-Ih)-IAT]-IA(hTR-Ih)-I
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And again, added information leads to a reduction in the variance

of the estimators.

8.2 Linear Constraints with Additive Random Components

Suppose the rank of h is n and that we know the additional

information about the n x 1 vector of unknown parameters, that is

(8.6) r = Sx + u

where r is a t x 1 vector, S

a t x 1 error vector such that

definite matrix.

is a t x n known matrix and u is

E(u) = _ and E(uu T) = A, a positive

Suppose the elements of u are independent of the elements of v

in (i). We can then combine (8.1) and (8.6) to obtain a new linear model,

that is

where

The classical Gauss-Markov Theorem yields the estimator using (8.7) as

the linear model as

x_= [hTR-lh + sA-Is] -I [hTR-Iy + sTA-Ir]
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or

^ [hTR-lh TA-1 s sTA-1 ^x=x+ +s ]-1 [r- sx].

the desired restzlt.
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Chapter IX

ON LINEAR ESTIMATION

WI_H INEQUALITY CONSTRAINTS

This c2mpter has its purpose to specify a general framework for

combining prior and sample information in the linear model when the

prior information consists of linear inequality or both equality and

inequality restraints on the individual coefficients or combinations

thereof. Under this specification, the estimation of the parameters

of the linear model if formulated as a problem of minimizing a quadratic

form subject to a set of linear equalities and inequalities (i.e., a

typical quadratic progranm/ng problem) and an algorithm is specified

which may be used to efficiently solve the nonlinear progran_ning

problem. The properties of the restricted estimator are discussed

and the formulation is extended to cover a set of linear regression

equations.

9.1 The Basic Model

The sample observations are assumed to be generated by the following

linear model :

(9.1) y = XB + u,

(9.2) E(u) = O,

(9.3) E(uu') = c2I
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where y is a (Txl) vector of observations, X is a (TxK) matrix

on nonstochastic elements that are fixed in repeated samples and have

rank K, and u is a vector of random disturbances which are ass_ued to

have zero mean, (9.2), and constant (finite) variance, and be uncorrelated,

(9.3). I is a unit matrix of order T, and S is a vector of unknown

parameters to be estimated.

Given this specification for statistical model, when only the
^

sample information is used, the ordinary least-squares estimator 8 is

obtained by solving the following problem:

^

To find the vector 8 that minimizes

(9.4) u'u = (y - xB)'Cy - xB).

Setting the derivative of u'u with respect to B equal to zero,

yields, for the minimizing value, the least-squares estimator

(9.5) 8 = (X'X)-Ix'y,

Q

which can be shown to have a minimum variance within the class of all

unbiased estimators which are a linear function of y.

9.2 General Restricted Least-S_uares

We now reformulate the above problem to include the following

inequality restraints :

I 1 r 1

(9.Sa) [B1] <
-I1 - -r_

U S S U

for rI > 0 and rI >__0 or 0 <_r I <__S1 5_r I,
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(9.5b)
U S

for r 2 <_ 0 and r 2 < 0

r 2 <_8 2 5_ <_0,

or

(9.5c) II3] l[83]
_i3 -- L_r_

U S

for r 3 > 0 and r 3 < 0 or

s u and s u
r3 <_ 83 5_r 3 r3 5_0 <-r 3 ,

E'''II  IrIill(9.5d) 82 5_ for r_ , r4 _

-Sl -$2 -$3 83 s < $8 <- u
r 4 _ r 4 ,

(9.Se) rR.1 % R31I 1182 = r5 for rS ><_0,

83

where r u and r.s for i : 1,2,3, are known vectors of upper and lower
1 i

bound constraints for the unknown coefficients in the ith set Bi,

and Ii for i = 1,2,3, is the identity matrix with rank corresponding

to the number of elements included in the parameter vector, 8i. Thus

for the inequality constraint (9.5a) the unknown elements of the parameter

vector 8i are restricted within a non-negative interval. Likewise for

inequality constraints _.5b) and (9.5c), the unknown elements 82 are

restricted to the non-positive interval and the unknown elements of 83

may range over an interval of positive and negative values. Constraint
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(9.5d) reflects the interval inequality specification for some linear

combination of the unknown coefficients 8i with S representing a

constant coefficient matrix reflecting linear combinations, ratios, etc.

S U

of the parameter vector 8i and r4 and r4 again represent a known

vector of upper and lower bound constraints. Constraint (9.5e) reflects

the equality specification on individual and/or a combination of unknown

parameters 8i. In the formulation to follow this restraint will be

handled as a special case of (9.5d) which relates to the situation when

the upper and lower bound constraints are equal.

By extending the prior information on the parameter set 8 to

include the inequality constraint possibilities (9.5a) to (9.5d) we have

the following problem:

To find the vector 8 that minimizes (9.4)

subject to constraints (9.5a) through (9.5e)

9.3 General Restricted Formulation

**
To convert the problem of finding the vector 8 which minimizes

(9.4) subject to the prior information contained in (9.5a) through (9.5e)

to a quadratic progranmdng problem, it is necessary to redefine the

variables associated with the admissible non-positive coefficients so that

the non-negativity requirements are fulfilled. In order to construct a

feasible quadratic progranming convention which does not conflict with

statistical procedures :

Consistent with (9.4) and constraints (9.5a) through (9.5e) let the

set of fixed X's be partitioned into XI, X2, X3 where

[X I, X2, X3] = [X] with the total number of variables equal to K and
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K = KI+K2+K3. With the subset X1 associate the non-negative restricted

vector of coefficients 81 with the subset X2 associate the non-
!

positive vector of coefficients 82, i.e., the X2Y vector is spanned
!

by a negative extension of the vectors (X2X2) in the moment space. With

the subset X5 associate the vector of unrestricted sign parameters

83 . To handle the non-positive prior specification on 82 and the

negative possibility for 83 and convert the expansion factors for the
! t

vectors of (X2X2) and (X3X3) to non-negative numbers, let us use the

programming convention of treating X2 as -X2 and augmenting X3

to (X3, -X3) and B3 to [8_1| , where 38 corresponds to the negative

Jconventlon deflne the augmented matrix

! ! t t ! ~

[_-X2X3-X3] as X and the augmented vector [81 82 83 38 ] as B.

Given this specification the problem may be formulated as:

To find the vector 8 that maximizes the quadratic function

(9.6)

!

= _ y Y + 2[81 B2 8 3 3 B ]

_1 _ _ ! _1 _1 _1 _I _

-uu: -(y- x_) (y- x) : -yy+ 2_ x y - B x xB
!

X1
!

-X 2
, [Y]

x3
!

-x 3

! 1 1 1

- [8i 82 83 38 ]

!

x1 x1 Xl(-X2)
; !

(-X 2) X1 X2 X2
! !

X3 X3(-X 2)
! !

(-x 3) x1 x3 x2

! I '-

X3 X3 Xl(-X 3)
! !

(-x 2) x3 x2 x3
! I

x3 x3 x3(-x 3)
t !

(-x 3) x3 x3 x3

81

82

83

38
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(9,7) I 1

-I 1

12

-I 2

13

-I3

S1 -S2 S3 -S3

-S1 S2 -S3 S3

81

82

83

3 8

<

U

r 1

S

U

r 2

U

r 3

m

A

or

(9.7) A8 < r,

and

(9.8)

whe re

and 8

8>0.

_T_ is (K+K3)x(K+K 3) positive semidefinite symmetric matrix

is a non-negative vector of unknown coefficients. Equality

constraint (9.5e) is handled through the inequality constraint (9.5d).

In this form the specification (9.6), (9.7) and (9.8) reflects a

typical quadratic programming problem, i.e., find the non-negative

values of the 8's which minimize a quadratic function which satisfy

given linear inequality constraints. By making use of the Kuhn-Tucker

"equivalence theorem' for non-linear programming [Ii, 13, 19] and the
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duality theorem of Dora [5, 6, 19] for quadratic programs the following

primaldual progranming formulation results:

To maximize

(9.9) (X y - X XB) 8 ' 8'W 'xr - C *xv) <o

subject to

(9.10) AI3 <_ r or A_ + v = r,

t _1 _ _ I _1 _

(9.11) A X + (X X)B >_Xy or A ),+ (X X)8 - w = Xy,

and

(9.12) 8,X >_ 0 or 8,X,v,w, >_ O,

where X is a vector of dual variables pertaining to the constraints

and v and w are vectors of artificial variables for transforming

(9.10) and (9.11) into equality systems. This problem, (9.9) through

(9.12), is solvable by use of the standard simplex version of the

quadratic programming algorithm developed by Wolfe [30]. The character-

istics of this algorithm for our problem are reflected in the tableau

presented in Table i.

TABLE 1

SIMPLEX TABLEAU FOR GENERALIZED RESTRICTED

LP_T- SQUARES ESTIMATORS

C 0 0 0 0

P X 8>0 v>0 w>0
O -- _

-M Zl r , A

-M Z2 X y X X
I -I
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In Table i the I's are identity matrices and M is any positive

real number attached to all artificial variables z, of the initial

basic solutions.

9.4 A Non-Linear Estimator

One can formulate a non-linear estimator for estimating a parameter

vector X in the linear model under the constraints that

bi _ Xi ! ai i = 1,2,...,n

by applying the Bayesian technique.

Suppose X has the multivariate uniform distribution and suppose

that Y given X has the multivariate normal distribution. Hence we

may write the respective density functions

(9.13) 1 l(y_HX) T R- 1
hCY/X) - (2_)n/2 iRll/2exp (- (Y-HX))

and

1

(9.14) g(X) : (al+bl) (a2+b2)... (ap+bp)

• <X. <a..
where if X = ..(xi) then -bI 1 1

The Bayesian estimator for X, say is given by

(9.15) = F.(x/Y).

The joint probability density of (Y,X) is

(9.16) f(Y,X) : h(Y/X) g(X)
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and the conditional density of X given Y is

(9.17) g (X/Y) : f(Y,X)/h(x)

where

(9.18)

a a

h(Y) : Ip ... yl f(y,X)dx I dx2 ... %

-bp -b 1

(al+bl) (az+bz)... (ap+bp) (Z_r) n/z IRI1/z

_p a ½ dXp.... I I exp (- (Y-HX) T R-I(y-HX))clx I dx 2 ...

-bp -b I

Then it follows that

(9.19) g (X,Y) :
1

(al+bl) (az+b2)... (ap+bp) (2_r) n/2 IR[ 1/z

exp (- _(Y-HX) T R-I(y-HX)) "

1

(al+bl) (a2+b2)... (ap+bp) (2_r) n/z IRI1/2

.... 11 exp (- Y-HX) T R-I(y-HX))dXl dx 2 ... %.

-bp -b 1
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From (9.18) and (9.19) it follows that

(9.20)

a

#
-b

X= .P

-b
P

a

I1 X

-bI

1 T 1
exp(. _(Y-HX) R- (Y-HX)) dx I dx 2 ... dx P

a

.., $i exp(- _Y-HX) T R-I(y-HX))dx I dx2 ... %
-b 1

Since -bi <__xi <_ai equation (9.20) implies that -bi <__xi <_ai.

Unfortunately we required normality assumptions on the observations

to obtain X = i ) however we may" study' X as defined by" (9.20) as a

non-linear estimator of X when X is not a random variable and Y is

not normally distributed.

The properties of such an estimtor have not been obtained at this

time.
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Chapter X

ON RECURSIVE ESTIMATION WHEN _HE

U3VARIANCE MATRIX IS LUqKNOWN

I0.i The Estimators

It is well-known that the minimun variance linear unbiased estimate

for the unknown parameter vector B in the linear model

(10.1) YN = XNB + eN

is

(10.2) BN = 1 -1 1

where

YN is NpXl

is nXl

is NpXn

eN is NpXI

vector of observations,

vector of parameters to be estimated.

matrix of known real numbers, and

vector of random errors

such that

(10.3)

(10.4)

EeN = ¢

EeNeT = VN

where

VN is a Np X Np positive definite covariance matrix.
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^

Clearly, in order to use the estimator 8 one must know VN.

Unfortunately, this is not usually the practical situation. One

alternative is i_nediate. Instead of (i0.2) use the estimator

(10.5) 8N = C_](N)

which minimizes the sum of squared errors,

T
(10.6) eNeN

We will limit the investigation here to the case where VN is

block diagonal and each block is a p X p submatrix V, that is

(10.7) VN : [v _ . . . _I
I
I

I
!

•"
_ . . . J

This case is important in orbit determination problems in which

YN _ Yl

Y2

t

XI

X2

m

XN
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where the sequence {Yi; i = 1, 2, ..., N} is a sequence of p X 1

observations. The vector YI is the data obtained at time tl' Y2 the

data vector at time t2, etc. where tI < t2 < ... < tN. The estimation

must be done :recursively. The recursive forms of (10.2) and (10.5) are

(lO.8) ^ ^ + T -I T -i -IxTv- 1=%1 [X_-lVN-lXN-1÷_v xN] WN-_-I]

and

(10.9) , , x_xN]-IT ,8N : 81,4_1 + [XITI_IXN_I+., -,N[YN-XNBN_I]

where

(10.10) [X_V-1XN ]-1 T -1 4v-lxN] -1= tX__lVs_lXN_1+

...T V71 .. ]-1 T -1 -1: t%l N1%1 {x_lvNlxN11

The recursive form of

(10.10).

can be obtained by letting V = I in

Other estimators that are recursive in nature which may be "good'

estimators are

(10.11) N_s t;. r-1 -1 T-1= x(_Sot X(_] [ x(_Sa Ya]
a=l a:l

where

(10.12) S a = _ (yj - XjBj)(Zj - Xj8 )T/a
j=l
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and

(10.13) 8N = N ×J-11 -IE oL T-IXotTa-lYc,](!=I - ,_=i

where

o&

(I0.14) Ta = _=ICYj
- Xj_(j__(Yj - Xj_j_l)T/a

given that B0 is the best approximation for 8 at time t0.

If a recursive scheme is not necessary then one might conjecture

that the estimator defined by (i0.ii) with the modification that

be replaced by

S

(10.1S)
N * *T

= (yj - XjBN) (yj XjBN) /N
S _=I

for all a or

N ^ ^

(10.16) S = [ (yj - XjBj_l)(y j - XjBj_I)T/N
j=l

for all .

The purpose of this chapter is to study the properties of the

estimators defined by (i0.Ii) through (10.14).

10.2 Properties of the Estimators

The following well-known [i] lemna will be used in establishing

the properties of the estimators defined by (I0.Ii) and (10.13) and

the statistics (i0.12) and (I0.14).
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LEblWA lO.l Let X and Y be a n x 1 and m x 1 vector of

random variables, respectively. Then

(10.15) E (Y) = E{E (YI x) }

Proof: Let f(X,Y) denote the joint probability density function

whose first moments exist. By definition of expectation

E(Y) = I I yfx_(X,y) a_ dy
x y

: I I YfY/xCY)fx(x) _ dy
x y

= f ECYIX) fx(X) dx
X

= E{E(YIX) },

the desired result.

Consider then E(_), that is

N N

xas a Ya]_.%_=_.c!=_o_;_xj-_c!____-_
N

: E{ [!:lXaS;lxa] -1

N

a:l

N N

: E8

= 8.
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Similarly, E("-BN) = B. Hence both _N and IN are unbiased estimators

for the parameter vector B.

The expected value of the statistic defined by (10.12) is

= 1E {_ [(yj- xjB)-xj (8;- 8)][(yj- x.8)-xj(8_- 8)] T}
a j=l J

_xj 8)T a , • 8)TxjT.2 a , 1 _ x.ECBj-B) CBj-
= V - _-!=lE(Bj-B)(yj + _" j=l .l

NOW'

- 8)(yj - xjS) T

* * T
xTcYj -xj 8j _1 ) (yj -xj 8j _1 ) 1.

-1

xT T -i x T thenLet Kj -- ( _iXj_l + xjxj) j,

E (Bj - B) (yj -xj 8) T = 0 + Kj E (yj -xj B) (yj -xj g) T * _xjB)T- K.x.E(BjjJ _1-8) (yj

= K.V.
J

Also

E(Sj-8) (Sj-8) =
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Therefore

T T -i T,,

ES_ = V- --_2_=l(Xi_iXj -l+xjxj) xF j=l .l

This shows the S is a biased estimate.
a

It remains to be determined the covariance matrix of the estimates

(10.11) and (10.13). Since the expected value of the estimate (10.14)

depends on the covariance of the estimate (10.11), this also remains to

be done.

i0.3 References

[i] Graybill, F. A., An Introduction to Statistical Models, Vol. i,

McGraw-Hill, Inc., 1961, p. 199.
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Chapter XI

THE MAXIMUM LIKELIHOOD ESTIMATES OF THE MEAN VECTOR

AND THE COVARIANCE MATRIX

ii.i Sunmr_,

The maximum likelihood estimators are derived for the mean vector

and the covariance matrix R where the p X 1 random vector X is

distributed as

(11.1) N(X; _,R) -
1

(2_)P/21R11/2 exp - ._-(X- _)TR-I(x - _).

Ii. 2 Preliminary Notions and Notation

Let {X , _ = 1,2,...,N} represent a sample of N observations

on X according to (Ii.i), where N > p.

N

(Ii.2) L - 1 1
(2_)pN/2[RIN/2 exp - "2"a=l[ (Xa - u)TR-I(xa - u).

Since the exponent is written in terms of R"I , we shall find the maximt_,

likelihood estimates of _ and R-I. The following lemma will give the

maximum likelihood estimate of R from the maximum likelihood estimate

of R-I, say _.

_Ii.I [i] Let f(0) be a real-valued function defined on a

certain set S and let ¢ be a single-valued function,

,
with a single-valued inverse on S to some set S ,

that is, to each 0 e S there corresponds a unique

8 e S and conversely to each @ e S there corresponds

a unique 0 e S.
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Let

g(e ) = f[¢-l(e )].

Then if f(e) attains a maximum at e : eo, g(e )

attains a maximum at e = e 0 = ¢(eo). If the maximum

of f(e) at e0 is unique, so is the maxim_n of

g (e) at e O.

Other useful lemmas are

_II.2 If A : AT then

 IAl/aii:Aii

;IAII aij = ZAij

where A= {aij} and the minor of aij is Aij

scalar).

(a

and

(11.4)

LENMA II.3 Let Xl, X2, ..., _ be N (p-com_nent) vectors and

N

let X -- [ XJN. Then for any vector b,
a=l

N

[ (Xa - b)(X a - b) T
o_:1

N

(Xa- X)(X a- X) + n(X - b)(X - b).
a:Z
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When we let b = _ in(li,4) and let

A

N

(Xa - X)(X- X)T,
a=l

(11,6)

the quantity (11.41)can be written

N

(Xa - _)(X - _)T= A + NCX - _)(X - _).
a=l

(11.6)

Using the result and the properties of the trace of a

matrix (tr CD : _ c..d. = tr DC) we have
ij z] ]i

N N

(X .)Tc(x - .) : tr [ (X - .)Tc(x - .)
_=I _:I

N

: tr _ ¢(X(_ - u)(X a - .)T
ct:Z

= tr CA + tr cN(X - _)(X - _)T

: tr CA + N(X - _)Tc(x - I_).

Thus we can write log L where L is given by (Ii.i).

(11.7) log L : - Z pN log (2_) + N log Icl

_1
tr CA - ½ N(X - _)Tc(x - .).

Since C is positive semidefinite, N(X - p)Tc(x - u) > 0

and 0 if u = [. To maximize the second and third terms

of (ll,7)we use the following lemna



144

_11.4 Let

c..d.

where C = (cij) is positive semidefinite and where

D : (dij) is positive definite. Then the maximum of

f(c) is taken on at C = ND -I and the maximum is

Proof: We note that f(c) tends to -® if C approaches a singular

matrix or if one or more elements of C approach - and/or -®.

Thus maxima of f(c) are defined by setting equal to zero the

derivatives with respect to the element of c. Using len_na 11.2

above, we find

(11.8) af _ 1 N BL_L - ½ dk k 1 col Ckkac_ _-I_T aCkk = _-N Icl - ½dkk

where cof Ckk denotes the cofactors of Ckk in C. For k _ t

(I I. 9)
af col Ckk

a% - N Icl

since Ckt = Ctk. Setting 2af/aCkk and af/ackt equal to 0 and

using the fact that col Ck£/]c I is the t,kth element of C-I, we

obtain NC -I = D. Thus C = ND -I. The value of maximt_n is

=I
f{ND .1) [ N log IND-11 - 1 tr ND-1D

=1
N log NPlp-ll - ltr NI

=i
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and the lemua is proved.

Ii. 3 The Estimators

On applying lenma (ii.5) to (II.4) we find that the maximum occurs at

1 -i
¢= lq-A .

We assume that A is nonsingular (the probability is 0 of drawing a

sample N • p such that A is singular). Thus A -I exists, and

is positive definite. Therefore u = _[ is the only value of u to

make the last term of (IL 7) zero. Thus the maximum likelihood estimators

^

for u and ¢ are u = X and ¢ = NA -I.

To find the maximum likelihood estimator of R, we apply lenma II,I,

giving

R = A/N,

which with

^
n

_=X

are the maximum likelihood estimators.

11.4 The Case When u = H X and Covariance Matrix is Known

The likelihood function is

g

1 N
1 1 --

(2_)Np/2 _R-_/2 e 2 a:l_ (Ya - Hax)TR-Icya - HaX).

Consider the natural log of L and take the partial derivative of
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an L with respect to the vector X, that is

N
_uL

_=1
HTR -1 H X) 2(Y_ -

Letting _ = 0 and solving for X, the maximum likelihood estimator

for X yields the minimum variance linear unbiased estimator for X,

that is

_ N N

x : (_:.:R-l.)-i[. R-Iy.
a=l :i a

A normality assumption is simply an unnecessary added restriction.

11.5

[l]

References

Anderson, T. W., An Introduction to Multivariate Statistical

Analysis, John Wiley and Sons, Inc., 1958, pp. 44-49.
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Chapter XII

ON COMBINING UNBIASED VECIDR ESTIMATORS

OF A VECTOR PARAMETER

12. i Preliminary Concepts

^ ^

Let 81 and 82 be two unbiased estimators of p x 1 vector
^ ^

parameter e. The p x p covariance matrices of 81 and 82 will

be denoted by 5 and 5; and the unbiased estimators of 5 and 5

be _ and _, respectively. We seek a linear combination of BI

^

and @2 which will be an unbiased estimator for @ and have a minimal

¢ovariance matrix in the following sense:

DEFINITION I.I The covariance matrix R is minimal if for any other

covariance matrix Q, the matrix Q - R is not negative semidefinite

or negative definite.

DEFINITION I.2 The covariance matrix R is strictly minimal if for

any other covariance matrix Q, Q - R is positive semidefinite or

positive definite.

Let the combined estimator for @ be defined as

(12.1) 0 : A 1 + BB2

where A and B are p x p matrices of real elements.

^ ^ ^

Since O1 and @2 are unbiased, then E0 = (A + B)8 which
^

implies that in order for o to be unbiased

(12.2) (A + B) : I

where I is the p x p identity matrix.
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^

The covariance matrix of e is

(12.3)

where

E[(o - 0)6 - o)T]: AqAT+_%J + BR21AT+ BP_BT

52 : E[(01 - 0)(02 " 0)T]

R21 : E[(02 - 0) (01 " 0)T]

5 : E[(01 - 0)(01 - O)T]

and P'2 = E[(°2 - 0)(02 " O)T]

Using the techniques from the calculus of variations and solving

for the matrix A after equating the first variation of R with

respect to A to zero in (12.3) under the constraints (12,2) one

obtains

(12.4a) A : (R 2 - R21)[5 + R2 - R21 - RI2]

(12.4b) B: (5 -52)[h÷ 5 -hi -521

and finally

(12.5a) R = R2 - (R 2 hi) [h h _l 52]-I+ _ _ (R2 - R21)

(12.5b)
-I

R: R1 - (5 - 52 )[RI + R2 - R21 - 521 (R2 - R21)

where we asst_ae the existence of the inverse of

[5 + R2 - R21 - R12 ]'1"
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Usually, the estimators B1 and

RI2 = _I = 0, then (12.4) reduces to

^

82 are uncorrelated; that is,

(12.6a) A = R2[R 1 + R2]-1 = [R.].1 + I_I]R{ 1= RI_ 1

(12.6b)

whe re

(12.7) R-I - + p,_l= RII

These results are well-known [i] and are included here for sake of

completeness. The covariance matrix R is strictly minimal when

compared with the covariance matrix of any other linear combination

estimator which is unbiased.

12.2 Th__eeCombine d Estimator Whe___nnthe Covariance Matrices _ an___d

(12.8)

Are Unknown

Let (_N denotes multivariate normal)

X(1) ~ MVN(0,RI)

X(2) " MVN(O,R2)

then

N1
1

.1 {=1xi

and
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1 N2

are unbiased estimators with covariance matrices RI/(N I = I) and

R2/(N 2 - i), respectively. Let the random samples {X_I); i = I,...,N I}

and {X_2); i = I,...)N 2} be independent) then X1 and [2 are

independent. It is well-known that Xj and Sj, where

(12.9) sj = _UzT _ _ _j)T
3

are independent [2]. Hence X-I, X--2,S1 and S2 are mutually independent.

Also we note that

ESj j 1,2.

Forming the estimator by substituting the max_ likelihood estimators

S. for R. in (12.6) and (12.1) and taking the expectation it is found
3 ]

that the estimator

(12.10) = S2[S I + S2]-ix I + Sl[S I + S2]-ix2

is unbiased. This follows directly

F$ --E{Sz(Si + Sz)-iiE{X1} + E{Si[Si + Sz]-iiFx2 --0.

We note since (A + B) = I, that F0 : 0 even if SI and

correlated and xI and x2 remain uncorrelated with sI

S2 are

and S2.

However, difficulties will arise when correlation exists between the

estimators and the estimates of their covariances.
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For clarity consider the univariate case in which we wish to

estimate c from two separate sources. Let

x(1) - N(_I,O2)

x(Z). N(.2,Z)

2
and Ul and u2 are not known. Two unbiased estimators for c

are

N1

2 1 .(1) _1)2
Sl= _ !=1 (xa

N 2

"::-r[
a=l

It is well-known that

(N1 - 1)s_ .
2

o

2
x (Ni - i)

and it follows that

Var s 2 204
= ff'2:r

1

Using (12.1) and (12.6) it follows that the strictly minimal unbiased

estimator for c is

204 204

O - sI + s2
2c4 2c4 204 204

N 2 - [ + N1 - 1 N2 r +

or
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N1 - 1 _ N2 - 1 2
(12.11) 0 = N1 + N2 _ 2 s + N1 # N2 "'2 s2

a well-known result. It is important to note that it is not necessary

2
to estimate the variances of si, i = 1,2.

Consider the problem of combining independent unbiased estimators

of the covariance matrix. Let (12.8) be the case of interest, then

(12.9) defines two independent unbiased estimators for R, the unsown

covariance matrix. From (12.1) and (12.6)

(12.12) e = R2[ _ + R2]-le I + _[_ + R2]-1e2 ,

Consider the following theorem

THEOREM 12.1 Suppose Xl, X2, ..., XN (N > p + i) are distributed

independently each according to N(u,R). Then the distribution of

1 N

S-N_ 1 _ _ D T
_=I (X- (Xa -

1

is W(_T R, N - i), that is, the Wishart distribution with

covariance matrix R and degrees of freedom N - I.

It can be shown [5] that if S = {Sij} is defined in Theorem 12.1

that

(12.13) ES --R

(12.14) [S,ST] : E{(Sij - ESij)(Sk_ - E_£)}

i

: _ {°ik_j£ + oi£Ojk}
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where (S,ST) is a

^

412.1s) ei :

(p2 + p)x4p2 + p)

i
Sll

i

si
PP

S-l,p

matrix. Defining

i = i_2

we note that

^

EO. =
l

- all

a22

app

a12

ap_ 1 ,p

i= 1,2

where R : {oij}. The

From 412.12) and 412.14)

(oi,o_) : ts,sT_

412.16) _: i C I_-_-i _T-_-c

as defined in (12.14).

-i^

1 1

÷_c_-c _T-_-c
-I

1

+ _C e2
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where C = {aikOjz + oitOjk}. The quantity (12.16) reduces

^ N1 - 1 ^ N2 - 1 ^

(12.17) B = N1 + N2 _ 2 el + N1 + N2 2 e2

a vector analog of the "pooled" estimate (12.12). Note again that the

^ ^ ^

estimate O is independent of the covariance matrices of 81 and 82.

12.3 Recursive Estimation of the Covariance Matrix

Consider the linear model

(12.18) Yt : HtXt + Vt

where Yt denotes a p x 1 vector of observations

Ht denotes a p x 2 known mapping matrix

Xt denotes an n x 1 unknown state vector whichwe wish

to estimate

Vt denotes p x 1 random vector such that EVt : ¢ and

HvtvT T T#O: R for all t. Also EVtVt+ T : ¢, .

Our purpose is to estimate R from a sequence of observations ordered

in time. Let

(12,.19) {Yt; t : 1,2,...,N}

be the sequence of observations. If Ht is full rank, that is,

Ht is rank n > p, then
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(12.20) -_..TR1H.vHT -I
Xt [ t tj tKt Yt'

But unfortunately in many applications the matrix R is unknown, hence

n_st be estimated.

Another case which is of interest is the estimation of the state

vector in dynamic linear filtering problems [3]

(12.21) Xt = [HTR-IHt + _tl]-I[HTR-IHt + _'Ixt] P < n

where Xt is an n x 1 vector a priori estimate of Xt prior to

taking the observations such that

EX t : Xt

and

a known covariance matrix.

Let

^

(12.22) Vt = Yt HtXt

tt

We note that

^
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However,

EVtV t = E{(y t - HtXt)(y t - HtXt )T}

_ _ HtXtXtHt )

(12.23)

An unbiased estimator can be found from (12.23) by subtracting out the

,ha ,sbias

t

St= [
i=l

The estimators (12.20) and (12.21) are then modified by substituting

St for R. The analog for (12.20) is

^ HT iHt) -IHTs-I(12.24) Xs = ( St t tYt

and the analog for (12.23) is

(12.2s) Xs-- (HtstlHt + _t 13 [HtStlyt + _tlxt ]"

The properties of St' )(s and Xs have not been developed at this time.
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